МАТЕМАТИКА

Здесь только то, чего нет в справочных материалах

Мои заметки

 $\log_a b$

а – основание $(\sqrt[n]{a})^n = a$ b - аргумент $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Логарифм показывает, в какую степень возвести а, чтобы получить b.

 $\log_{a^n} b = \frac{1}{n} \cdot \log_a b$

 $\frac{\log_c b}{\log_c a} = \log_a b$

 $\log_a b \cdot \log_c d = \log_a d \cdot \log_c b$

Квадратные уравнения частные случаи

Вид: $ax^2 + c = 0$

– «ах²» оставляем слева,

«с» переносим вправо.

Вид: $ax^2 + bx = 0$

- выносим «х» за скобку,

Вид: $A^2=B^2$

затем каждый множитель

A=B или A=-B

приравниванием к нулю.

- 1) х в знаменателе знаменатель не равен нулю.
- 2) х под корнем (чётной степени) делаем проверку, не записывая ОДЗ!
- 3) ${\bf x}$ под логарифмом аргумент логарифма больше 0, основание больше 0 и не равно 1.

Иррациональные уравнения

- 1) Оставить с одной стороны только корень, остальное перенести вправо;
- 2) Обе части возвести в квадрат;
- 3) Сделать проверку.

Дискриминант (вторая формула)

Для квадратного уравнения с чётным коэффициентом b:

$$D_1 = \left(\frac{b}{2}\right)^2 - ac$$

$$x_{1,2} = \frac{-\frac{b}{2} \pm \sqrt{D_1}}{a}$$

Тригонометрические формулы

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\frac{\operatorname{cg} x - \frac{1}{\cos x}}{\cos x} - \frac{\operatorname{cg} x - \frac{1}{\operatorname{tg} x}}{1 + \operatorname{ctg}^2 x} = \frac{1}{\sin^2 x}$$

Системы уравнений

Алгоритм решения:

1) В ЛЮБОМ из двух уравнений выражаем одну ЛЮБУЮ переменную;

2) Подставляем её в то уравнение, которое ещё не использовали - получаем уравнение с одной

- переменной: 3) Находим значение одной переменной;
- 4) Возвращаемся к месту, где мы выразили другую переменную и находим её значение.

Отрицательные углы

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$tg(-x) = -tgx$$

$$ctg(-x) = -ctgx$$

При умножении/делении НА отрицательное число знак неравенства меняется. Вид: $ax^2 + bx + c > 0$ (или < 0) раскладываем на множители!

Для этого приравниваем к нулю, находим корни уравнения x_1 и x_2 и записываем:

 $a(x-x_1)(x-x_2)=0$

Неравенства

Далее МЕТОД ИНТЕРВАЛОВ:

- отмечаем корни на прямой; – подставляем число из крайнего правого промежутка в неравенство (знак
- неравенства будет одинаковый на всём интервале!);
- далее справа налево знаки чередуются.

Логарифмические

важно!

Если основание логарифма больше 1, то знак неравенства сохраняется (мы просто убираем логарифмы). Если же основание больше 0 и меньше 1, то знак неравенства между его выражениями меняется на противоположный. $\log_a x > \log_a b \Rightarrow x > b$ (при a > 1)

$$\log_a x > \log_a b \Rightarrow x > b$$
 (при $a > 1$) $\log_a x > \log_a b \Rightarrow x < b$ (при $0 < a < 1$)

Показательные

важно!

Если основание в неравенстве больше 1, то знак неравенства выполняется и для его показателей. Если же основание больше 0 и меньше 1, то знак неравенства между его показателями меняется на противоположный.

$$a^x > a^y \Rightarrow x > y$$
 (при $a > 1$)

$$a^x > a^y \Rightarrow x < y$$
 (при $0 < a < 1$)

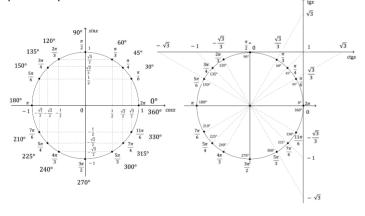
Примерные значения корня и логарифма

$$\begin{aligned} \log_3 10 &\approx \log_3 9 = 2 & \sqrt{82} \approx \sqrt{81} = 9 \\ \log_2 17 &\approx \log_2 16 = 4 & \sqrt{3, 2} = \sqrt{3, 20} \approx \sqrt{3, 24} = 1, 8 \end{aligned}$$

Когда возводим любое десятичное число в квадрат, получим чётное количество знаков после запятой.

Как найти коэффициент k?

Тригонометрия



4

Функции и производная

Уравнение прямой u = kx + b

Если k > 0, то наклон прямой вправо. Если k < 0, то наклон прямой влево. Если b > 0, прямая по графику сдвигается вверх на величину b. Если **b < 0,** прямая по графику сдвигается вниз на величину b. Если b = 0, прямая проходит через начало координат.

Уравнение параболы $y = ax^2 + bx + c \quad x_{\scriptscriptstyle B} =$

Значение коэффициента «с» смотрим на пересечении параболы с осью ОҮ.

Если а > 0, ветви параболь направлены вверх Если а < 0, ветви параболы направлены вниз.

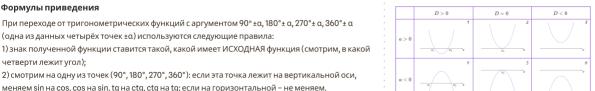
На прямой находим две ЦЕЛЫЕ точки, через нижнюю проводим прямую параллельно ОХ, из верхней опускаем перпендикуляр на неё. Находим тангенс угла между прямой и ОХ (вертикальный катет делим на горизонтальный): k = 4:2 = 2.

Как найти коэффициент b? Смотрим точку пересечения прямой с OY. b = 4.

Нули квадратичной функции

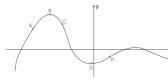
Нули функции у = f(x) – это такие значения аргумента, при которых

Чтобы найти нули функции (точки пересечения параболы и прямой ОХ), нужно приравнять функцию к нулю и найти корни квадратного уравнения.



Если дискриминант больше нуля, парабола пересекает ОХ в двух точках. Если дискриминант равен нулю, парабола касается ОХ. Если дискриминант меньше нуля, то парабола не пересекает ОХ.

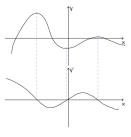
Производная



Производная - это скорость изменения функции.

Производная показывает, КАК (с какой скоростью) меняется функция в конкретной точке.

Положительна или отрицательна функция смотрим по ОҮ (перпендикуляр на ОҮ из точки). Положительна или отрицательна производная смотрим по возрастанию или убыванию функции в точке.



четверти лежит угол);

Формулы приведения

Для того, чтобы по графику функции понять, как примерно выглядит график её производной, нужно

найти экстремумы функции (это нули производной), а также промежутки возрастания и убывания. Если функция возрастает, график производной будет выше оси Х, если убывает - ниже оси Х.

Геометрический смысл производной

$$y'=\operatorname{tg}lpha=k$$

6

Производная в данной точке численно равна тангенсу угла наклона касательной. Если касательную задать уравнением, коэффициент k будет равен значению производной в этой точке.

Планиметрия Единицы измерения площади

 $1 M^2 = 1 M \cdot 1 M$

1 ар = 10 м · 10 м = 100 м² = 1 сотка $1 \text{ KM}^2 = 1 \text{ KM} \cdot 1 \text{ KM}$ $1 \text{ Fa} = 100 \text{ M} \cdot 100 \text{ M} = 10000 \text{ M}^2 = 100 \text{ COTOK}$

Сумма углов треугольника 180°

Сумма углов четырёхугольника 360°.

Сумма углов n-угольника 180° ⋅ (n – 2).

Периметр - сумма длин всех сторон.

Теорема синусов ДЛЯ ЛЮБОГО ТРЕУГОЛЬНИКА!

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

R – радиус описанной около этого треугольника окружности

Параллелограмм

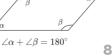
- это четырёхугольник, у которого противоположные стороны попарно параллельны.

Свойства:

1) противоположные стороны и противоположные углы равны

2) диагонали точкой пересечения делятся пополам

Смежные (соседние) углы параллелограмма в сумме равны 180°.



Трапеция

– это четырёхугольник, у которого две стороны параллельны, а две другие – нет.

Свойства равнобедренной трапеции: 1) диагонали и углы при основании равны 2) около неё можно описать окружность

Для решения задачи с трапецией часто нужно провести высоту, а в равнобедренной две высоты.

Углы трапеции, прилежащие к одной боковой стороне, в сумме равны 180°.

10

Треугольник Виды треугольников

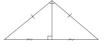
равнобедренный прямоугольный (равносторонний)

Биссектриса, медиана, высота

Биссектриса треугольника делит **УГОЛ** пополам.

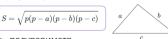
Медиана треугольника делит СТОРОНУ пополам (противолежащую). Высота треугольника ПЕРПЕНДИКУЛЯРНА стороне, к которой проведена.

В равнобедренном треугольнике все эти три отрезка совпадают (в случае, если проведены к основанию!)



Доп. формулы площади треугольника

Формула Герона:



р - полупериметр

Через радиус вписанной окружности:

Через радиус описанной окружности:

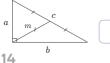
Катет напротив 30

В прямоугольном треугольнике

катет, лежащий напротив угла 30°, равен половине гипотенузы.

Медиана, проведённая из вершины прямого угла

В прямоугольном треугольнике медиана. проведённая из вершины прямого угла, равна половине гипотенузы.



Ромб

- это ПАРАЛЛЕЛОГРАММ, у которого все стороны равны.

1) все свойства параллелограмма

2) диагонали перпендикулярны и являются биссектрисами углов ромба

Прямоугольник – это ПАРАЛЛЕЛОГРАММ, у которого все углы прямые.

1) все свойства параллелограмма

2) диагонали равны

Квадрат

- это ПРЯМОУГОЛЬНИК, у которого все стороны равны.

Свойства

1) все свойства прямоугольника

2) диагонали перпендикулярны и делят углы квадрата пополам (свойства ромба)

Диагональ квадрата:

 $d = a\sqrt{2}$

Вертикальные и смежные углы

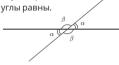
Площадь параллелограмма

ромб

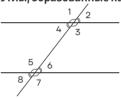
 $S = ab \sin \alpha$

 $S = a^2 \sin \alpha$

Смежные углы в сумме равны 180° Вертикальные углы равны.



Углы, образованные параллельными прямыми и секущей



· Накрестлежащие углы равны (4 и 6, 3 и 5);

· Соответственные углы равны (1 и 5, 4 и 8, 2 и 6, 3 и 7);

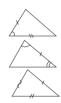
 $\cdot\,\,$ Односторонние углы в сумме равны 180° (4 и 5, 3 и 6).

11

Признаки равенства треугольников

1) по двум сторонам и углу между ними

3) по трём сторонам

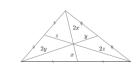


Внешний угол треугольника Внешний угол треугольника - угол,

смежный с каким-либо из углов треугольника.

Теорема о медианах треугольника

Медианы любого треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.

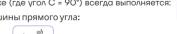


13

Синус - отношение противолежащего катета к гипотенузе. Косинус - отношение прилежащего катета к гипотенузе. Тангенс - отношение противолежащего катета к прилежащему.

В прямоугольном треугольнике (где угол C = 90°) всегда выполняется: Высота, проведённая из вершины прямого угла:

Котангенс - отношение прилежащего катета к противолежащему.



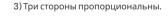
Признаки подобия

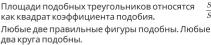
1) Находится по формуле:

В подобных треугольниках соответственные углы равны, а соответственные стороны пропорциональны.

1) По двум углам.

2) Две стороны пропорциональны, а углы между ними равны.



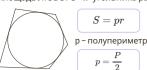


 $\sin A = \cos B$

tgA = ctgB

15

Площадь ЛЮБОГО* n-угольника равна:

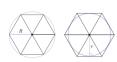


*в который можно вписать окружность

Правильный треугольник

Правильный шестиугольник

это шестиугольник, в котором равны все стороны и все углы.



Правильный шестиугольник своими диагоналями делится на 6 правильных треугольников.

16

Если вписанный и центральный углы одной окружности опираются на одну дугу, то вписанный угол равен половине центрального угла.

Вписанный угол. опирающийся на диаметр - прямой.

Отрезки касательных к окружности, проведённые из одной точки, равны (AB = AC)

Касательная к окружности перпендикулярна радиусу, проведённому в точку касания

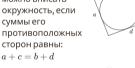
Хорды и дуги

Равные хорды стягивают равные дуги.

18

Четырёхугольник и окружность

В четырёхугольник можно вписать окружность, если суммы его противоположных сторон равны:



Около четырёхугольника можно описать окружность, если суммы его противоположных углов равны: $\alpha + \gamma = \beta + \phi$ (суммы противоположных углов будут равны 180°).

Центры окружностей

Центром окружности описанной около прямоугольника, является точка пересечения его диагоналей.

Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.

Центром окружности, вписанной в квадрат, является точка пересечения его диагоналей.

20

- это многогранник, две грани которого являются равными многоугольниками, находящимися в параллельных плоскостях, а остальные грани – параллелограммами.

Прямая призма

– это призма, у которой боковые

рёбра перпендикулярны её основаниям.

Правильная призма

гранями призмы.

– это прямая призма, у которой основания – правильные многоугольники.

Грани, которые находятся в параллельных

плоскостях, называются основаниями призмы, а остальные грани - боковыми

Круг и окружность

Радиус - отрезок, соединяющий любую точку окружности с центром. Все радиусы одной окружности равны.

Хорда - отрезок, соединяющий любые две точки на окружности.

Диаметр - хорда, проходящая через центр окружности.

Касательная - прямая, имеющая с окружностью только одну общую точку.

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают эту окружность

Вписанный угол измеряется половиной дуги, на которую он опирается.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Центральный угол – угол, вершина которого лежит в центре окружности, а стороны пересекают эту окружность

Центральный угол равен дуге, на которую он опирается.

17

Треугольник и окружность

Вписанный треугольник - треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Треугольник описан около окружности, если эта окружность касается всех его сторон. Тогда окружность называется вписанной в треугольник.

В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.

Центр вписанной окружности у ЛЮБОГО треугольника – точка пересечения биссектрис.

Центр описанной окружности у ЛЮБОГО треугольника – точка пересечения серединных перпендиуляров.

Если прямоугольный треугольник вписан в окружность, то её центр - середина гипотенузы.

Радиус окружности, вписанной в прямоугольный треугольник:

19

Стереометрия Основные сведения

Ребро – отрезок, соединяющий две вершины многоугольника или многогранника.

Поверхности многогранника называют гранями. Грани представляют собой плоскости, ограниченные сторонами многоугольников из которых состоит многогранник.

Двугранный угол - угол между двумя гранями

Равновеликие фигуры - плоские фигуры, имеющие одинаковую площадь.

Равновеликие тела - тела, имеющие равные объёмы.

Если прямая перпендикулярна плоскости, то она перпендикулярна всем прямым, лежащим в этой плоскости.

Отношение объёмов двух подобных многогранников равно кубу коэффициента подобия. Отношение площадей поверхности двух подобных многогранников равно квадрату коэффициента подобия.

Любые два куба/шара всегда подобны. Если все рёбра многогранника увеличили в одно и то же количество раз, получим подобный многогранник.

Площадь поверхности любой призмы

 $S_{\text{пов}} = 2 \cdot S_{\text{осн}} + S_{\text{бок}}$

Высота совпадает с боковым ребром только у ПРЯМОЙ призмы!

Параллелепипед

– это призма, основанием которой является параллелограмм.

Объём ЛЮБОГО параллелепипеда: Площадь поверхности:

Все грани параллелепипеда - параллелограммы.

Прямой параллелепипед

- это параллелепипед, у которого все рёбра перпендикулярны плоскости основания.

Основания - параллелограммы; Боковые грани – прямоугольники.

Прямоугольный параллелепипед

– это прямой параллелепипед, v которого в основании прямоугольник.

Куб

- правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы

Диагональ куба

$$d=a\sqrt{3}$$

$$V=a^3$$
 $S_{ ext{ iny IOB}}=6\cdot a^2$

Пирамида

– это многогранник, одна из граней которого – произвольный многоугольник, а остальные грани – треугольники, имеющие общую вершину.

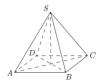
Вершина пирамиды - точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Высота пирамиды – отрезок перпендикуляра, проведённого из вершины пирамиды к плоскости её основания

Пирамида

Площадь поверхности любой пирамиды

$$S_{ ext{пов}} = S_{ ext{och}} + S_{ ext{бок}}$$



Цилиндр

- тело, состоящее из двух равных кругов и всех отрезков, соединяющих соответствующие точки этих кругов.

Основания (круги) цилиндра равны и лежат в параллельных плоскостях.

Образующие цилиндра - отрезки, соединяющие соответствующие точки окружностей кругов. Образующие цилиндра параллельны и равны.

Высота цилиндра - расстояние между плоскостями оснований.

Ось цилиндра - прямая, проходящая через центры оснований.

26

Правильная пирамида

– пирамида, основание которой ПРАВИЛЬНЫЙ многоугольник, а вершина проецируется в центр основания.

Свойства:

- боковые рёбра равны:
- все боковые грани равнобедренные треугольники.

Тетраэдр Прямоугольная пирамида

- это пирамида, в которой одно из боковых рёбер перпендикулярно основанию. В этом случае данное ребро и будет высотой пирамиды.

– это треугольная пирамида.

В тетраэдре ЛЮБАЯ грань может быть принята за основание пирамиды.

Конус

- это тело, состоящее из круга (основания конуса), точки, которая не лежит в плоскости этого круга (вершины конуса) и всех отрезков, которые соединяют вершину конуса с точками основания (образующих конуса).

25

 $S_{ ext{ iny HOJH}} = \pi r l + \pi r^2$

Высота конуса - перпендикуляр, опущенный из вершины конуса на плоскость основания.

Основание высоты - центр круга.

27

Часть от числа, проценты, пропорции

Чтобы найти часть от числа, нужно эту часть умножить на число.

Процент - это одна сотая часть числа.

$$50\%$$
 — это $\frac{50}{100}=\frac{1}{2}.$ Значит, делим число на $2.$ 25% — это $\frac{25}{100}=\frac{1}{4}.$ Значит, делим число на $4.$ 20% — это $\frac{20}{100}=\frac{1}{5}.$ Значит, делим число на $5.$ 10% — это $\frac{10}{100}=\frac{1}{10}.$ Значит, делим число на $10.$

5% — это $\frac{5}{100} = \frac{1}{20}$. Значит, делим число на 20.

В пропорции произведение крайних членов равно произведению средних.

32 : 4 = 96 : 12

28

Сложные проценты

Если увеличиваем число A на p%, умножаем его на $1+\frac{p}{100}$.

Если уменьшаем число A на p%, умножаем его на $1 - \frac{p}{100}$.

Арифметическая прогрессия

Формула п-го члена

арифметической прогрессии: Формулы суммы арифметической прогрессии:

$$a_n=a_1+d(n-1)$$

$$S_n = \frac{a_1 + a_n}{2} \cdot \cdot$$

$$a_n = \frac{2a_1 + d(n-1)}{2} \cdot n$$

Движение

$$S=v\cdot t$$
 v ср. $=rac{S\,$ общ. $t\,$ общ.

$$S$$
 – расстояние; v – скорость; t – время.

$$A = v \cdot t$$

$$A$$
– работа, v – производительность, t – время.

29

Скорость сближения и удаления

1. Встречное:

Когда объекты движутся навстречу друг другу, они сближаются со скоростью, равной сумме скоростей.

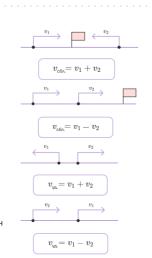
2. Вдогонку:

Когда один объект догоняет другой, они сближаются со скоростью, равной разности скоростей.

3. Движение в противоположных направлениях: Когда объекты движутся в противоположном направлении, они удаляются друг от друга со скоростью, равной сумме скоростей.

4. Движение с отставанием:

Когда объекты движутся в одном направлении, и один отстаёт от другого, они удаляются друг от друга со скоростью, равной разности скоростей.



Вероятность события

Вероятность - отношение числа благоприятных событий ко всем возможным

 $0 \le P \le 1$

ВЕРОЯТНОСТИ ПРОТИВОПОЛОЖНЫХ СОБЫТИЙ В СУММЕ РАВНЫ 1.

Сумма вероятностей

Вероятность того, что наступит ХОТЯ БЫ ОДНО из двух несовместных событий, считается как сумма вероятностей этих P(A+B) = P(A) + P(B)«ИЛИ»

Произведение вероятностей

Если происходят два независимых события А и В с вероятностями Р(А) и Р(В), то вероятность появления события А и В одновременно равна произведению вероятностей:

 $P(A \cdot B) = P(A) \cdot P(B)$

Свойства чисел

Натуральные числа – 1, 2, 3, 4, 5, 6, 7 и т.д. Целые числа – это –3, –2, –1, 0, 1, 2, 3 и др.

0 – чётное целое число. Не является ни положительным, ни отрицательным.

Признаки делимости

На 2: Все чётные числа делятся на 2.

На 5: Все числа, оканчивающиеся на 5 или 0.

На 10: Все числа, оканчивающиеся на 0.

На 3: Если сумма цифр числа делится на 3, то и само число делится на 3.

На 9: Если сумма цифр числа делится на 9, то и само число делится на 9.

На **4:** Число делится на **4**, если две его последние цифры – нули или образуют число, которое делится на **4**.

На 8: Число делится на 8, если три его последние цифры – нули или образуют число, которое делится на 8.

На 11 делятся только те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, кратное 11.

Простые и составные числа

Простое число – натуральное число, имеющее ровно два различных натуральных делителя – единицу и самого себя. Например, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 и т.д. 1 – не простое число.

Составное число – натуральное число, большее 1, не являющееся простым. Например, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20 и т.д.

Основная теорема арифметики

Любое натуральное число можно разложить на простые множители единственным образом.

Делимость на составные числа

Число делится на составное число n, если оно делится на все его взаимно простые делители.

Что делать в задаче? Пусть сказали, что искомое число делится на 36. Раскладываем 36 на простые множители и перемножаем одинаковые: $36 = 6 \cdot 6 = 2 \cdot 3 \cdot 2 \cdot 3 = 9 \cdot 4 \Rightarrow$ чтобы число делилось на 36, оно должно одновременно делиться на 9 и на 4 (далее используем признаки делимости).

33

35

37

34

38

36