		KOH	ДИГУРАНИЯ ВНЕ	ЕШНЕГО УРОВНЯ					
KOJ	пичесті			ГРОНОВ У ГЛАВНЫХ ПОДГРУПП					
Элеме	нты гла	вных под	цгрупп - это	КОНФИГУРАЦИЯ d-элементов:					
элеме	нты, кот	орые в я	чейке пишутся	Sc: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹					
слева				Ti: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ²					
S-элем	иенты: э	лементы	главных	V: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³					
подгр	упп I, II г	руппы		Cr. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (проскок)					
Р-элем	иенты: э	лементы	главных	Mn: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵					
		по VIII гру		Fe: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶					
			я (Sc) до цинка	Co: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷					
			адмия (Cd)	Ni: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸					
			актаноиды,	Cu: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ (проскок)					
актин	ий и акт	аноиды		Zn: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰					
Номе	р период	ца, в кото	ром Кол-во пр	отонов=кол-во электронов =					
распо	ложен з	лемент,	порядков	порядковому номеру элемента					
показ	ывает н	омер	Кол-во не	Кол-во нейтронов= атомная масса элемента =					
внеш	него эн.у	/ровня		кол-во протонов					
				масса (написана в таблице					
目目	à	•		ева, окргуляем до целых все значения,					
-	2	00.30	кроме хло	ора. У него оставляем 35,5)					
II. subs 1			*номер гр	омер группы показывает: количество					

сходная	сть различне	разульная	pasment	ОДИНАКОВАЯ И СХОДНАЯ КОНФИГУРАЦИЯ
G	ECT.	Págr	Her	Например, конфигурация внешнего слоя и калия, и хрома 4s ¹
Одинаковая	Нет различана Ш	Her passuresss	Her passwers	Значит, это одинаковая конфигурация внешнего уровня
†	sweed a		8	Например, конфигурация внешнего слоя калия - 4s ¹ , а натрия - 3s ¹

мент	Валентность	Элемент	Степень окисления
н	1	н	-1 (с металлами); 0; +1
С	III (и угарном гази).	С	от -4 до +4
23	IV	N	-3; 0; +1; +2; +3; +4; +5
N	III, IV	0	-2; -1; 0; +1; +2
0		F	-1; 0
F	1	Si	-4; 0; +4
Si	IV	Р	-3; 0; +3; +5
Р	III, V	s	-2; 0; +4; +6
S	II, IV, VI	Cl, Br, I	-1; 0; +1; +3; +5; +7
Br, I	I, III, V, VII	CI, DI, I	-1, 0, +1, +3, +3, +1

Высшая с.о. (или мах с.о.) Низшая с.о. (или min c.o.) = (номер группы) - 8 Разность межу высшей и низшей степени Высшая - (-низшая) = высшая + низшая

Элемент

н

C

0

F

Si

P

Cl. Br. I

СТЕПЕНЬ ОКИСЛЕНИЯ И ВАЛЕНТНОСТЬ МЕТАЛЛОВ Степень окисления Элемент

Металлы IA	0; +1	Металлы IA	1
Металлы IIA	0; +2	Металлы IIA	U U
Металлы IIIA	0; +3	Металлы IIIA	111
Sc	0; +3	Sc	m
Ti	0; +4	Ti Ti	IV
٧	0; +5	V	٧
Cr	0; +2; +3; +6;	Cr	II, III, VI
Mn	0; +2; +4; +6; +7	Mn	II, IV, VI, VII
Fe	0; +2; +3; (+6);	Fe	II, III, (VI)
Cu	0; +1; +2	Cu	1, 11
Zn	0; +2	Zn	н
Sn, Pb	0; +2; +4	Sn, Pb	II, IV

Разность межу высшей и низшей степени окисления Высшая - низшая = высшая + 0

В узлах	Atom	Молекул	Ионы	Исны Исны
Связь	Ковалентная	Ковалентная (инутри моликулы) Межмолекулярные взаимодействия (между молекуляны)	Ионная (между ионами) Ковалентная (инутри инкоторых экснов)	Металлическая
≅из. свойства	• Очена твердазе Очена тугопловине • Прочасе • Высовие температуры кипезия и пловления • Не проводят эл. ток Нерастворимых в воде	 Летучие Низине температурых колезька и плавления Не проводят зи, ток 	Вассовие температуры пловления и иления Растворы и росплавы проводит электрический ток	 Твердые (кроме ртуни) Метагилический блеск Ковкость Проводят тепло Проводят электрический ток
Примеры	Алмаз, грофит, кремений, оксид кремния, карбид кремния, бор, черный и красный фосфор, германий	Кислород, сера, галогены, оксид углерода, галогенводороды, этанол, метан и т.д.	Сульфат меди, пидроксид калия и т.д.	Металлы и их сплавы

химическая связь КОВАЛЕНТНАЯ НЕПОЛЯРНАЯ СВЯЗЬ (НЕМЕТАЛЛЫ-НЕМЕТАЛЛЫ): между ковалиен пал нешолигнал своязо (пісшен для піста піст

атомами разных химических элементов ИОННАЯ СВЯЗЬ (НЕМЕТАЛЛЫ-МЕТАЛЛЫ): между атомами неметалла и металла: оксиды металлов, соли, гидроксид металлов, ионные бинарные соелинения МЕТАЛЛИЧЕСКАЯ: только в металлах ХИМИЧЕСКАЯ СВЯЗЬ ДОНОРНО-АКЦЕПТОРНОГО МЕХАНИЗМА Веществах: азотная кислота и ее соли; соли аммония; соли аминов; комплексные вещества; озон; угарный газ; катион фосфония

<u>ОКИСЛИТЕЛЬНЫЕ И ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА (задание №19)</u>

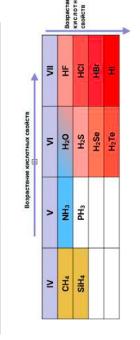
ПЕРИОДИЧЕСКИЙ ЗАКОН (ИЗМЕНЕНИЕ СВОЙСТВ) Высший гидроксид или высший оксид => элемент находится в максимальной степени окисления

От литий ко фтору: это от левого край таблица к правому

Значит, это сходная конфигурация внешнего

От лития к францию: сверху => вниз

.


0

SCTBO CHIBBA OHOB

2

Ħ

Характеристика	изменения в периоде (от лития ко фтору)	изменения в группе (от лития к францию)
ктроотрицательность	Увеличивается	Понижается
Атомный радиус	Понижается	Увеличивается
нергия ионизации	Увеличивается	Понижается
Заряд ядра	Увеличивается	Увеличивается
пичество электронов	Увеличивается	Увеличивается
Іисло электронных слоев	Не изменяется	Увеличивается
родство к электрону	Увеличивается	Понижается
Неметаллические свойства; Неметалличность	Увеличивается	Пониэкается
Металлические свойства; Металличность	Понижается	Увеличивается
ислотные свойства сидов и гидроксидов	Увеличивается	Понижается
Сила челородсодержащих кислот	Увеличивается	Понижается
ала бескислородных кислот	Увеличивается	Увеличивается
осстановительные свойства	Попижается	Увеличивается
Окислительные свойства	Увеличивается	Понижается

ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА	
ет понижение степени окиспения элемента, например.	

Будет понижение степени окислея 4HCl + $MnO_2 \Rightarrow Cl_2 + MnCl_2 + 2H_2O$ Марганец в оксиде марганца имеет степень окисления +4, а потом в продуктах он становится +2. Следовательно, он MnO₂ - окислитель, а марганец имеет окислительные свойства

ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА Будет повышение степени окисления элемента, например: $4HCl + MnO_2 \Rightarrow Cl_2 + MnCl_2 + 2H_2O$

4mci + мmog => v_{i2}+ мmc_{i2}+ 2m₂v Хлор в соляной кислоте имеет степень окисления -1, а потом в продуктах он становится 0. Следовательно, он HCl - восстановитель, а хлор имеет восстановительные свойства ОКИСЛИТЕЛЬНЫЕ И ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА

Будет и повышение, и понижение степени окисления элемента.

наример: 3Cl₂ + бNaOH => 5NaCl + NaClO₃ + 3H₂O Хлор и повышает, и понижает степень окисления. Поэтому хлор проявляет и окислительные, и восстановительные свойства НИ ОКИСЛИТЕЛЬНЫЕ, НИ ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА

Не изменяется степень окисления

КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ

Присоединение (как реакция соединения в неорганике) Замещение: замещение атома водорода или заместителя на другой

заместитель

ОВР Ионный механизм реакций: нитрование аренов азотной кислотой в присутс.конц.серной; гидратация алкенов и алкинов; галогенирование аренов в присутствии катализатора; алкилирование аренов; реакция спиртов

с HHal; реакция галогенпроизводных с водными растворами щелочей; с птал, реакции талитеніризводнах с воднаймі растворами присоединение галогенов в по двойной или тройной связи Радикальный механизм: галогенирование алканов; нитрование присоединение хлора к бензолу; галогенирование а

Сильные электролиты: сильные кислоты, щелочи, все соли Слабые электролиты: основные и амфотерные гидроксиды, слабые кислоты, вода, раствор аммиака и простейших аминов

Смещение равновесия	Где меньше молекул газа	Где больше молекул газа	Если +Q, то «в сторону <u>обратной</u> реакции» Если -Q, то в сторону <u>прямой</u> реакции	Если +Q, то «в сторону прямой реакции» Если -Q, то в сторону <u>обратной</u> реакции	В сторону прямой реакции	В сторону обратной реакции
Изменение фактора	Увеличение	Уменьшение	Увеличение	Уменьшение	Увеличение	Уменьшение

Смещение равновесия	Где меньше молекул газа	Где больше молекул газа	Если +Q, то «в сторону <u>обратной</u> реакции» Если -Q, то в сторону <u>прямой</u> реакц	Если +Q, то «в сторону прямой реакции» Если -Q, то в сторону обратной реакции	В сторону прямой реакции	В сторону <u>обратной</u> реакции	В сторону <u>обратной</u> реакции	В сторону прямой реакции	Изменение скорости реакции	*
Изменение фактора	Увеличение	Уменьшение	Увеличение	Увеличение Уменьшение		Уменьшение	Увеличение	Уменьшение	Изменение фактора	увеличение
Фактор		Навление	Температура		Концентрации	ревлентов	Концентрации	продуктов	Фактор	

1		реагентов	Концентрации		Фактор		ткмпература	Концентрация	Thegade selection to yourselection	Довление	(narieso rissu)	Площадь соприкасновение	(пераке вецести)	Природа веществ	Каталмаатор
	Увеличение в	Уменьшение В с	Увеличение В	Уменьшение 8	Изменение фактора	уреличение	уменьшение	увеличение	уменьшение	увеличение	уменьшение	увеличение	уменьшение	Чем активнее вещество	~/~
minimum gornada minutana	в сторому прямом реакции	В сторону обратной реакции	В сторону обратной реакции	В сторону прямой реакции	Изменение скорости реакции	4	•	+	•	4	•	+	+	+	

СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ

п веществ чем активнее вещиство	-/- qoracen	М 2 М и М М А К К Б Й !!! а С Э Н Э К К Т А К К
Приро	Като	К к 2

Сила бес

leталлы от Li до Al - на катоде выделяется водород, H₂O + 26 ⇒> 2OH + H₂ ferannы от Mn до Pb - на катоде выделяется водород металл, 2H₂O + 26 ⇒> 2OH + H₂ Meⁿ + nē ⇒> Me^o металлы от Sb и далее- на катоде выделяется металл, НОДНЫЙ ПРОЦЕСС АНОДНЫИ ПРОЦЕСС бислородсодержащий анион (от кислородсодержащие кислоты) ⇒ кислород на аноде, $2H_2O$ - $4\bar{e}$ ⇒ $4H^*$ + O_2 вескислородный анион: сам элемент (сера, хлор, бром, іод), $2Hal^n$ - $2\bar{e}$ ⇒ Hal_2 ◦ S^2 - $2\bar{e}$ ⇒ S^0 !!! Электролиз р-ров солей фторида ⇒ кислород на іноде, $2H_2O$ - $4\bar{e}$ ⇒> $4H^*$ + O_2 иниде, 2H₂U - 4e \approx AH+ + O_2 руганическая кислота: 2ROO - 2ē \approx 2CO $_2$ + R-R электролиз кислот: на катоде - водород, 2H+ + 2ē \approx 4; на аноде - кислород электролиз шелочи: на катоде - водород; на аноде - ислород, 4OH- 4ē \approx 2O $_2$ + H_2 O ЭЛЕКТРОЛИЗ РАСПЛАВА АТОДНЫЙ ПРОЦЕСС олько металлы Ме^{л+} + nē => Ме^о НОДНЫЙ ПРОЦЕСС

ЭЛЕКТРОЛИЗ РАСТВОРОВ

КАТОДНЫЙ ПРОЦЕСС

ислородсодержащий анион (от кислородсодержащие ислоты) => кислород на аноде, 2SO₃2- - 4ē => O₂ +

Бескислородный анион: сам элемент (сера, хлор, бром Бескиолородный анион: сам элемент (сера, хлор, ором, йод): $2Hal^n - 2\bar{e} \Rightarrow Hal_2 \circ S^2 - 2\bar{e} \Rightarrow S \circ$ | |||| Электролиз расплава фторидов \Rightarrow фтор на аноде,

2F- - 2ē => F2 Пет ⇒ практически не смещает химического равловесию Да ⇒ расписываем на ионы 2. Есть ли эти ионы в уравнении? Да ⇒ где? ⇒ в продуктах - повышение конционов в продуктах, равновесие смещается в сторону обратной реакции (в сторону реагентов) Да ⇒ где? ⇒ в реагентах - повышение конционов в реагентах, равновесие смещается в сторону прямой реакции (в сторону Да ⇒ где? ⇒ в реагентах - повышение конционов в реагентах, равновесие смещается в сторону прямой реакции (в сторону

ДЛЯ ЗАДАНИЯ 30: РАСПИСЫВАЕМ НА ИОНЫ Растворимые соли: $BaCl_2 \Rightarrow Ba^{2+} + 2Cl$		

НЕ РАСПИСЫВАЕМ НА ИОНЫ

ПЕРЯСИ ІИСЫВАЕМ НА ИОНЫ Слабые кислоты, слабые растворимые гидроксиды. Нерастворимые гидроксиды. Нерастворимые гидроксиды. Кислотные анионые: $[Al(OH)_a]$, HCO_3 , HSO_3 Но можно: HSO_4 — H + SO_4 — H + SO_4 — H + F

тоединение (много реагентов \Rightarrow один продукт); "Разложение (один реагент \Rightarrow много продуктов); "Замещение (AB + C \Rightarrow AC + B); "Обмена (AB + CD \Rightarrow AC + BC)

<u>ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ</u>

Сильные кислоты: HCl => H+ + Cl-

Щелочи: NaOH => Na+ + OH-

изменяется степень окисления - окислительно-восстановительная (ОВР) *не изменяется степень окисления - неОВР

ОБРАТИМОСТЬ *обратимые р-ции: $N_2 + 3H_2 \Longleftrightarrow 2NH_3$ $H_2 + I_2 \Longleftrightarrow 2HI$ $2SO_2 + O_2 \Longrightarrow 2SO_3$

обратимые р-ции: $N_2 + O_2 <=> 2NO$ $N_2 + 3H_2 <=> 2NH_3$ $N_2 + O_2 <=> 2NO$ $H_2 + |_2 <=> 2H|$ $CO + 2H_2 <=> CH_3OH$ $2SO_2 + O_2 >= 2SO_3$ водный гидролиз сложных эфиров Дегидрирование/гидрирование Гидратация алкенов/дегидратация спиртов

і необратимые р-ции: реакции, в которых происходит выделение тепла (акзотермические р-ции), выпадение осадка, выделение газа, образование малодисосицирующих веществ (вода) ТЕПЛОВОЙ ЭФФЕКТ

ТЕПЛОВОИ ЗОВЕКТІ З'ЯКОТЕМИ ТЕПЛОТЫ): реакция соединения, реакция с кислородом, реакция нейтрализация, активные металлы и их оксиды с водой, хлорирование метана и этана, разложение дихромата аммония(!) *эндотермические (поглошение теплоты); $N_2 + O_2 => 2NO$. $H_2 + I_2 => 2HI$.

реакции разложения

реакции разложения $\Pi O = ADINUHO KATAЛИЗАТОРА$
"каталитические реакции: используется катализатор $N_2 + 3H_2 \Rightarrow 2NH_3$ $4NH_3 + 5O_2 \Rightarrow 4NO + 6H_2O$ $2SO_2 + O_2 \Rightarrow 2SO_3$ $2CIO_3 \Rightarrow O_2 + 2KCIO$ $2H_2O_2 \Rightarrow 2H_2O + O_2$ $CO + 2H_2 \Rightarrow CH_3OH$

Многие органические реакции

*некаталитические реакции: не используется катализатор КОЛИЧЕСТВО ФАЗ

≃ кции: раствор+раствор; газ+газ; взаиморастворим

е реакции: раствор+твердое ве твердое в-во+твердое в-во; несмешивающиеся жидкости

продуктов)
2. Есть ли эти ионы в уравнении?

Economic в уделение в уделение в предуста и предуста слабый электролит, осадок или газ)

Если реагируют с реагентами, то химическое равновесие смещается в сторону реагнетов (в сторону обратной реакции)

Если реагируют с продуктами, то химическое равновесие смещается в сторону продуктов (в сторону прямой реакции)

Вещест	гво	Мономер-полимер	্ৰ	Рормула	Вещество	Мономер	-полимер		Формула	
Этилен (этен)	Мономер: этилен	H_2	C=CH ₂		Мономер: ви	нилбензол	(-CH=CH ₂	
		Полимер: полиэтилен	(-CH	$I_2 - CH_2 -)_n$	Винилбензол (стирол)			8	_	<u> </u>
		Мономер: пропен	H ₂ C=	-CH-CH ₃	(стиролу	Полимер: по		(
Пропен (пр	опилен)	Полимер: полипропилен	(-CH ₂ -	-СН-СН ₃) _п		A COMMON COMMON	enson)			-
Бутадие	н-1,3	Мономер: бутадиен-1,3/ дивинил	H ₂ C=C	H-CH=CH ₂		Мономер: тетрафторэт	илен		F = C F	
(дивин		Полимер: бутадиеновый/ дивиниловый каучук	(-CH ₂ -C	H=CH-CH ₂ -) _n	Тетрафторэтилен		10 24.000 kg T	((F-C-C-F) _n	
		Мономер: 2- метилбутадиен-1,3/ изопрен	1735000 000	C-CH=CH ₂		Полимер: те	рлон		FF	
2- метилбутад	шен-1.3	D005476		113		Мономер:			0. \(\sigma\).0	•
(изопр		Полимер: изопреновый/ природный каучук		C=CH-CH ₂ -) _n CH ₃	Терефталевая к-та	терефталева	я-кта	Н	о,с-{}он	
2-хлорбута	nuou 12	Мономер: хлоропрен		C-CH=CH ₂		Полимер: полиэтилент (лавсан)	ерефталат	-0,0	-Cto-CH-CH-	
(хлороп		Полимер: хлоропреновый каучук		C-CH-CH ₂ -) _u		Мономер: ка	пролактам		O	пол
Хлорэ	тен	Мономер: хлорэтен	Cl-	CH=CH ₂	Капролактам					продК танобра
(хлорэты хлорвии		Полимер: поливинилхлород	CI	CH-CH ₂ -) _n		Полимер: ка	прон	[-1	NH-(CH ₂) ₅ -CO-] _n	обра
Вещество	4	Область применение		Вещество	Область применение		Вещест	90	Область при	менение
Asor	Получение вмии системах	нака, азотной кислоты, удобревния.	В охладительных	Метан, пропан, изобутан	В качестве топлива		Нитрат аммон (аммизчизя се		Удобрение	
Азотная кислота		обрений, вэрывчатых вещества, к		Метилакрилат	Производство пластмасс		Нитрат калия	200000	Удобрание	
Активированный уголь Алюминий	The second second second second	і средство при очистке яоды. В мед производство сплавов для овмолет		Мрамор, известняк	Мраморная крошка, строительство		(калийная сель	NO.37511	197797-56 (1970)	
STEAMHON!	металлов	The second contrast of the contrast of the contrast	ou rony-eneed	Нефть	Производство топлива Удобрение	-	Нитрат натрия (натриевая сел		Удобрение	
Avwess	Производстной с Нашатырный спо	вэотной к-ты, удобрений. Вэрыечат ирт	ых веществ.	Нитрат аммония (аммиачная селитра)			Озон		Дезинфекция воздуха, водоочис	тка
Аналин		расителей, красок и лекарста		Нитрат калия (калийная селитра)	Удобрение		Оксид кремни	+ (IV)	Керамические изделия, стекло	gradik
Ацетилен	Гаровая сварка в поливинилолори	иетаплов. Растворитель. Получении		Нитрат натрия	Удобрение		Оксид серы (IV		Производство серной киспоты,	отбеливающ
Ацетон	Растворитель			(натриевая селитра) Озон	Лезинфекция воздуха, водрочистка		Оксид углерод	a (II)	В качестве реагента при произв	одстве мета
Бензол	Получение пласт	тмасс. Производство квучука, си-т	тических	Оксид кремния (IV)	Керамические изделия, стекло		Перекись водо	рода	Отбеливатель, обработка ран, о	светвления і
Бром		рственные средства		Оксид серы (IV)	Производство серной кислоты, отбеливающе	е средство	Пикриновая к-	та (2,4,6-	Варывчатое вещество	

Вещество	Мономер-полимер	Формула
	Мономер: акрилонитрил	CH_2 = CH - CN
крилонитрил	Попимер: полиакрилонитрил	(NC - CH - CH ₂ -),
Крахмал	Мономер: глюкоза (1)	HO OH OH
Прахмал	Полимер: крахмал	OH OH OH
Целлюлоза	Мономер: глюкоза (I)	HO OH OH
on • Teneral angle (vil. ₹ a Tener	Полимер: целлюлоза	OH OH OH CH'OH

Аксусная кислота

одуктах образуется низкомолекулярное вещество (например, вода) аким реакциям относятся: образование полисахаридов, полипептидов, разование капрона, образование фенолформальдегидной смолы, азование полиэтилентерефталата

шленность. Консе

Avwasc	Производстной в Нашатырный спи	зотной к-ты, удобрений. Взрывчатых веществ.	(аммиачная селитра)	PACCESTOR		Озон	Дезинфекция воздуха, водоочистка	Фенол	пикриновой кислоты, красителей. Дезинфицирующие		
Анмлин	-	есителей, красок и лакарста	Нитрат калия (калийная	Удобрение				-	средства		
Ацетилен	14	етаплов. Растворитель. Получение	селитра)	. Constant of the		Оксид кремния (IV)	Керамические изделия, стекло	Фенолформальдегидная	Производство пластмассы, клея, лака		
жирскоен	поливинилохлори		Нитрат натрия (натриевая селитра)	Удобрение		Оксид серы (IV)	Производство серной кислоты, отбеливающее средство	смола	20 DX = 2 X X		
Ацетон	Растворитель		Озон	Дезинфекция воздуха, водрочистка		Оксид углерода (II)	В качестве реагента при производстве метанола	Формальдегид	Производство смол		
Бензол	Получение пласт	масс. Производство каучука, синтетических	Оксид кремния (IV)	Керамические изделия, стекло		Перекись водорода	Отбеливатель, обработка ран, осветвления волос	Фосфаты	Фосфорные удобрения, в медицине, производство моющих средств		
Бром	-	ственные средства	Оксид серы (IV)	Производство серной кислоты, отбелив	вющее средство	Пикриновая к-та (2,4,6-	Вэрывчатое вещество				
Бутадион-1,3 (дивинил)	100000000000000000000000000000000000000	учука, резины, пластмассы	Оксид углерода (10)	В качестве реагента при производстве г	метанола	тринитрофенол)		Фосфор	Производство спичек, ядов, дымовых снарядов		
Водород			Перекись водорода	Отбеливатель, обработка ран, осветвле	эспос	Пирит	Производство серной кислоты	Фтор	Производство тефлона, фреснов		
өодород		танола, получение мергарина, восстановление тгургии, ракетное толливо	Пикриновая к-та (2,4,6-	Взрывчатое вещество		Поливинилхлорид	ПВХ-трубы, оконные панели	Хлор	Водоочистка (обеззарживание и дезинфецирование		
Гидоокарбонат натрия	Чистящие вещес	тво, рерыклитель теста	тринитрофенол)			Поликарбонат	Пластиковые бутылки, DVD-диски		воды). Отбеливающее средство. Производство соляной кислоты, хлорной извести, каучука, синтетических		
Гидрофосфет кальуция	Удобрения	1000	Пирит	Производство серной кислоты			Programme and the second secon	1	волокон		
Елицерин	В составе космет	ических иремов, лекарств	Попивинилипорид	ПВХ-трубы, оконные панели		Полипропилен	Изготовление упаковочной пленки	Хлорметан	В холодильных установках		
Диклорметан,	Растворитель		Поликарбонат	Пластиковые бутыпки, DVD-диски		Природный газ	Для получения теплоэнергии, электроэнергии	Цеплюлоза	Получение искусственного шелка (ащетатный шелк),		
тетрахлорид углерода			Полипропилен	Изготовление упаковочной пленки		Пропен	Получение высокомолекулярных соединений	Plennanime	получение бумаги, картона, глюкозы, этанола		
Изопрен (2- метилбутадиен-13)	Получение каучу	ca ca	Природный газ	Для получения теплоэнергии, электроэн	нергии	Cepa	Производство резины, спичек, пороха, серной кислоты	Циклогексан	Получение бензола		
Йод	Антисептик		Пропен	Получение высокомолекулярных соеди	renush	Серная кислота	Электролит в аккумуляторах, производство красителей,	Циклопропан	Наркоз		
Капрон	Производство те	кстильных волокон	Ceps	Производство резины, стичек, порака, о	серной кислоты	100	варывчатых веществ	Этанол	Растворитель, в пищевой промышленности		
Капролактам	Получения капро	Microsoft Decreases	Серная кислота	Электролит в эккумулиторах, производо	ство красителей,	Силикат капия/натрия	Жидное стекло (силикатный клей)	Этен	Производство этанола. Получение полиэтилена,		
Киспорад		чация, полеты в космос, подводное плавание	Силикат калин/натрия	варывчатых веществ Жидкое стехло (силикатный клей)		Синтез-газ	Получение метанола и др органических соединений	3(84	пластмасс		
	(дайнинг, подвод	ная лодка(). Ракетное топливо. В метаплургим				Сода	Производство стекла, мыловарения	Этилацетат, бутилацетат	Растворитель		
Кремний	Зпектроприборы	в солненных батареях	Синтез-газ	Получение метанола и др. органических	соединении	177	V V V V V V V V V V V V V V V V V V V				
Кумол	Получение фенал		Содя	Производство стекла, мыповарения		Стеарат натрия/калия	Производство мыла (мытье рук и стирка)	Этиленгликоль	Производство пластмасс		
Лимонная хислота		стенок метаплической посуды. Пищевая	Стеарат натрия/калия	Производство мыла (мытье рук и стирк		Стирол	Полистирол (используется для производства контейнеров		ТИПЫ ВОЛОКОН		
Water Control of the	промышленность		Стирол	Попистирол (используется для произво, пициі)	дства контейнеров для	Суперфосфат	для пищи)	HATVPARISHIE (
Метан, пропан, изопропан	В качестве топли	63	Суперфосфат		Удобрение		Удобрания	НАТУРАЛЬНЫЕ (ПРИРОДНЫЕ): Растительные: лен, хлопок			
Метипакрулат	Производство пл	астывос	Тринитроглицерин	Медицина - лекарство. Получение дина	etuu.	Тринитроглицерин	Медицина - лекарство. Получение динамита	Животные: шелк, шерсть			
		W				2,4,6-тринитротолуол	Варывчатое вещество	Минеральные: асб			
Мрамор, изве	СТНЯК	Мраморная крошка, строите	ельство			Трихлорметан	Растворитель, использовался раньше как наркоз	химические:			
The State of the S		a more the poor follows want to the property of the COV					[C 4001 C 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				

НАЗВАНИЕ АППАРАТА	НАЗНАЧЕНИЕ
ПРО	изводство серной кислоты
Почь для обжига в «жилящем слое»	Пирит (FeS ₂) реагирует с кислородом: 4FeS ₂ + 11O ₂ + 2Fe ₂ O ₃ + 8SO ₃
Циклон	Очистка газа от крупной пыли
Электрофильтр	Очистка газа от мелкой пыли
Сушильная башия	Осышение водяных паров
Теплообменник	Нагрев газовой смеси
Контактный аппарат	Взаимодействие оксида серы IIV) с кислородом: 25O ₂ + O ₂ ⇒ 25O ₃
Поглотительная башня	Оксид серы (VI) поглощают конц серной кислатой. Получение олеума: SO₂ + H₂SO₄ → H₂SO₄*SO₃
M	ПРОИЗВОДСТВО МЕТАНОЛА
Турбокомпрессор	Сжатие смеси до определенного давления
Теплообыенник	Нагрев газовой смеси
Колонная синтеза	Реакция угарного газа и водорода в присутствии катализатора CO + 2H₂ → CH₂OH
Холодильник	Сжижение метанола
Сепаратор	Отделение метанола от угарного газа и водорода, которые не прореагировали
Сборник метанола	Сбор метанола

Производство топлива

Нефть

Сборник метанола	Сбор метанола					
НАЗВАНИЕ АППАРАТА	назначение					
	ПРОИЗВОДСТВО АММИАКА					
Турбокомпрессор	Сжатие смеси до определенного давления					
Колонна синтеза	Взаимодействие азота и водорода в присутствии катализатора: $3H_2 + N_2 \Rightarrow 2NH_3$					
Холодильник	Сжижение аммиака					
Сепаратор	Отделение аммиака от азота и водорода, которые не прореагировали					
	производство чугуна					
Доменная печь	Производство чугуна					
п	РОИЗВОДСТВО ВЕЩЕСТВ ИЗ НЕФТИ					
Ректификационная колонна	Перегонка нефти с получением различных углеводородов (бензин, лигроин, керосин, дизель, мазут, гудрон)					

ЗАЛАНИЕ 29 Типичные окислители: Cl₂, Br₃, HNO₃, H₈SO₄ (конц.), MnO₂, KMnO₄, K2C₂O7, K₂CrO₄, KClO, KClO, H₂O₂, O₂, SO₂, Na₂O₂, Fe(III) типичные восстановители: S,P, C, I₂, сульфиды, йодиды, бромиды, H₂S, NH₃, PH₃, нитриты, сульфиты, SO₂, Cu(I), Fe(III), Cr(III), Mn(II), Cr(III), H, CO, Н2О2, металлы Продукты окисления и восстановления в таблицах АЛГОРИТМ РЕШЕНИЯ 29 ЗАДАНИЯ

Растворитель. Получение тринитрот

- Выписать вещества в виде формул Определить степень окисления, определить окислитель и
- восстановитель
- Подобрать вещества под условие реакции
- Написать уравнение
- Составить электронный баланс
- Уравнять рекацию
 Указать окислитель и восстановитель

МЕТОД ЭЛЕКТРОННОГО БАЛАНСА

Уравнение: $KMnO_4 + NH_3 + KOH \implies K_2MnO_4 + N_2 + H_2O$

Записываем полуреакции: какие элементы меняют степень окисления
 Mn¹⁷ + 16 => Mn¹⁶
 2N³ - 66 => №

 Находим наименьшее количество электронов. Для этого можно использовать два метода:
 1 - (большее кол-во электронов принятых/отданны) разделить на меньшее, если число целое (1,2,3 и т.д.), то большее кол-во электронов и ■ есть наименьшее количество электронов

есть наименьшее количество электронов [2 - перемножить (лучше делать после fro способа)

Мп⁻⁷ + 1 € => Mn⁻⁶ |

3. Наименьшее количество электронов - это число электронов которых должно быть отдано и принято. Поэтому нужно домножить до этого числа уравнения

Поставить эти множители перед веществами в уравнении (учитывая цифры, которые вы ставили перед атомами в самом электронном балансе, например, «2» перед хлором была поставлена в электронном

 $6KMnO_4 + 2NH_3 + KOH \implies 6K_2MnO_4 + N_2 + H_2O$

5. Уравнять остальные элементы:

 $6KMnO_4 + 2NH_3 + 6KOH => 6K_2MnO_4 + N_2 + 3H_2O$

РЕКОМЕНДАЦИИ ПО ЗАДАНИЮ 29

1. Правильно читайте условия

2. Для выполнения на максимальный балл нужно: 1 - написать и уравнять уравнение; 2 - написать электронный баланс; 3 - указать окислитель и восстановитель

3. Степень окисления: сначала знак (+/-) потом цифра. Заряд иона:

ацетатное волокно, вискозное волокно

лимитъссите: Синтетические (синтезированы с 0): капрон, нейлон, лавсан, полиэтилен Искусственные (модернизация природных):

сначала цифра, потом знак

сначала цифра, потом знак Реакция раложения не учитываются Можно не указывать наименьшее количество электронов Простые вещества (двухатомные молекулы) можно записывать № Другие вещества нельзя записывать с индексами С/2+6, только 2Сr+6 Иногда окислитель/воссановитель бывают и веществом, которое создает среду раствора. Поэтому коэффициент могут отличаться от тех, которые получают по электронному балансу РЕКОМЕНДАЦИИ ПО ЗАДАНИЮ 30

 Для решения задачи 23 нужно составить таблицу (пример ниже) Исходная концентрация (моль/л) = сколько вещества было в реактор добавлено вещества объяго в реактор досавлено изначально Равновесная концентрация (мольк) = сколько вещества осталось после реакции Прореагировало - это сколько вещества 3. появились (+)/потратилось (-). Находится путем сравнения исходной и равновесной 4. концентрации
Например, исходная концентрация метанола
была 0, а равновесная стала 2.
Следовательно, прореагировало метанола +2.

	Реагент	Реагент	Продукт	продукт
Коэкр.р-ции				
Асход, конц.				
Прореагиро вало				
авнов, конц.				

Правильно читайте условия

Для выполнения на максимальный балл нужно: 1 - написать и уравнять молекулярное уравнение; 2 - написать ионное уравнение; 3 - написать системеннение; 3 - написать системеннение; 3 - написать со

АЛГОРИТМ РЕШЕНИЯ 23

учитываются
4. Используйте таблицу растворимости ЗАДАНИЯ 1. Нарисовать таблицу ЗАДАНИЕ 23

2. Прочитать условие внимательно. Записать в таблицу соответствующие данные. Если вещества не добавляли, а оно появилось в результате реакции, то исходная концентрация этого вещества 0 моль/л Найти «прореагировало»

одного вещества Найти «прореагировало» других веществ через уравнения реакции, учитывая коэффициенты в уравнении Находим исходные и равновесные концентрации, учитывая, какие вещества расходывались (тогда исходная концентрация больше равновесной), а какие синтезировались (исходная концентрация будет меньше равновесной)

Γ.	Ī	•	_	В	зозм	ОЖ	ные і	BAPI	ИΑН	ΙТЫ	K 3/	ΔДАН	нию	Z	Ī	_		Ţ		возмо	ЖНЫЕ ВАРИ	АНТЫ К ЗА	АДАН	<u>НИЮ 7</u>				v	rnenone	полсол	ержащие г	ewects:		
			цест					-	NAME OF TAXABLE	000000	10000	HEALTH	анты	отве	та				Веще	ство		Точно Н	HE PE	ЕАГИРУЕТ	r.	Вещество	Алканы	Unite-	Алин	Harina		Алкадиен	an language	<u>Гомологи</u> Бензола
200		(оред			ности)		остое і ль мен							а, кис	лорс	д		ı	Водород Хлор, бром, йод	i.	Si, P, Be, Al O2, N2, C					Горение	Simone P	алканы	-	алкень	+ H ₂ O			Бензола
Mo	талл	(малс	овкти	mesii)	1		ль ме NO3, H						ла, к	ислот	а-ок	ислит	ель	i	Фтор, бром, хло	p	Кислоты-оки						- 10	+ IManue						
Не	метал	nn					остые		цест	ea, u	щелоч	чь (5	S, Si,	P, F	lal),	кисло	та-	ı	Кислород Металлы		Кислоты окис Другие метал		сшие с	оксиды и гид	проксиды	Cl ₂ /Br ₂		разрыв цикл Большие - замещение!	a +		•			•
	новни	ый ок 08	сид и	целоч	ных		слота, прокси,		а, ки	слот	гный	окси	д, ам	фотер	ный	оксиј	ци	i	Вода						щелочи, соли пример, сульфид		_	+ IManue	343			21		
		ый ок					CO, BO	-	д, ки	слота	В							ł	Основания и ос	wonwe	алюминия), к Другие основ	ислоты			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Hz	-	циклы, циклопентан	0			•	*	
Ам	фоте	рный	окси	Д		C; KOT	СО; і горый с	водој образ	род; зует	кис щело	слота; очь; кі	; ще арбон	лочь; нат; су	осні льфи	вны гы	й окс	ид,	i	оксиды Амфотерные ок					AN W 5WAR	осксиды. Соли	HNO ₃	•	•		не р	азбираются		*	*
2000		ный о ный о	SHADE.	max c	0.01)	-	да (иск элочь,										ла	i	гидроксиды	005000000	(искл.карбон	аты и сульфі	иты), Г	PSSIHal	оксиды. соли	H₂O		(95)	+				75	(Стиролі)
	омеж	куточ		.0.)		кис	слота-с НF, ще	окисл	пител	ъид	цр.)	16142	in tree	ponni	,0 0	одоро	Mai	ı	Кислоты и кисл	отные оксиды	Другие кисло	ты и кислот	гные о	жсиды		KMnO ₄ (H ₂ O)		1750	+	*	*	*	-	(CTVpqn)
oc						Oc	новный					ыйо	ксид,	щело	чь, н	кислор	юд,	i			ЗАДАН	НИЕ <u>28</u>				K ₂ Cr ₂ O ₇	- 1	0360	*	*	*	*	. *	(#0)
CC	2						дород магний	і, щел	лочь									ı	Примеси - эт Масса смеси	= масса при	имесей + масс	са самого в			ОВИЮ	Bragent	3	(Только цинопопропан	. +	*		*	. 8	
		ный о куточ		o.)			елочь, слота-с					ител	ь (пе	реки	зь в	одоро	да,	i	w(примесей):	=т(примесе	й)/т(смеси)*1	100%				Ag ₂ O(NH ₃), Na		0.70	553		+ (Концевал связь)	8	70	474
888		образ	улощи	nik OKC	рид	-	ислоро,))					ı								HCI		# IManue		٠.	- CBH35)		+-	
. 300	фоте	рный	гидр	акам	4	Ще	слота, элочь,	кисл	пота,	кис			оксид.	COD	ветс	твуюц	ций	i								НВг	20	циклы)	1943	-		21	25	
Oc	новня	ый ги	дрокс	жд		yer	тойчив слота,	ой ки	слот	re								ı								полимер.	-						1	(Стирол)
100	расті слота	вория в	mail)			(Cr	оль, к	отора	ая с	образ	зован							i																
						кот	фотерн торым фотерн	обр	разун	отся	oca,							i																
		nore				-	фотерн поген ()					, соль	ь (раст	гвори	иая)			ı																
1000		омили аство		*)		Co.	ль (ра	ство	рима	asi), L	щелоч	чь, к	сислот	а (си	льне	е, че	и в	i																
Ka	рбоні	аты				-	пи) 02, амф	отер	ные	окси,	ды, к	ислот	ты, сол	пь				ı																
Ku	слая	соль				Ще	элочь,	кисло	ота с	ильн	ee, co	оль (р	p-p)					i																
ī	Ī	_	-		-		Ŧ	Ī	-				-		Ī	2,000					12.	Боше	V	lor:										
200				ng n			N - N).					H- 940		(research		H- H		i			Кар	боновые	кисл	юты	Непровезьные			- 1	Кислор	одсоде	ржащие	вещест	ва	
1				accados			Зшие стир! (рествория Н (нерас	-	۵.	Dieta A		P, Bucu		овизво	I	P, Best	o M		Вещество	Муралышак	Другие предельные	Шавстева		Акриловая	карбоновые кислеты:	Вещество		имониме Вельные		овтомные Фельные	Фено	м да	дегиды	Котоны
- Compa				day u			P (per		1	2		- DATES		VP (sean		- Sellow		4		Kucioma	карбоновые кислоты	кислота		KNCIOMA	оленновая. липоленовая. липолекая	Горение		ирты.		индины.	0 ₂ + H ₂ O			40.000.0000
9						1	Bek		4	1		1		2	1	ş			Горение			CO ₂ + H	120		aunivieras	Торение				-	2.1120		Ĭ	
ŀ I				можин	100	080	DCKHB IUBX				П					П		1		848	540					H ₂		. /	1	*	1		+	•
П		2	gxp	DILLUN 35		es Ano	anders and an		WCO.	,				NO:		Ш	MONDA	1	H ₂		реакцию идет сло производные кисло такого)		дет	(по дво	т йной связи)			1	10		(0)	-/		
l I		A Gencary	ges sau	аракте	sanaca	M woods	yayum yayum		The Wilky	Sanavo	Эвсеми	330,800	можеше	M Seriex	эстал	2	DHAM 31		Металлы			+	_			Металлы	(Na, K, Li	, Ca, Ba, Sr)	INa, K,	ti, Ca, Ba, S	(Na, K, Ca, Ba,	U, Sr)	-	*
П		sanaxos	upers toow	DCTM C.X	ena Gea	184	мятьщя	381803	Seculation	obien	ENN 36	peakon	STITES IN 1	риятия	omee or	og beg	звивка	H	Оксиды		(С металлами, ст		активно	ости до водоро	ода)	PCI ₅ /PBr ₅		*	-	. 0	>.	- 3	+	+
1	38160	ости с	Senare sew agni	манам	пого цв	насы	duen - r	189 Ces	1400	Application of the state of the	рактерн	мости с	с мепри	DCT# C.I	утвердь	OM 19X0	ton dea	4	металлов Гидроксиды			+				СиО Шелочь		• • O	0	*	2 0	()	5	-
180	san gea	ти жит	Ser n-ma	повать	mrsu Ser	OCTM C H	cnupn.	serriec	жидкос	COLBET	BB C XB	a artitric	фости	е жиду	wordsow	C 36FBX	semec se whith		металлов	Окисление до	т	+				Cu(OH) ₂		- 13	冗	4	VOL	8		*
l I	1	жафсы	CASSA	эж оди	криста	athra a	A, MOTTRA APPITAN	pret/dag	BRBKING	o di di	semect	ve nety	The XO	a nety-a	нистью	ОКОСТИ	отника		Cu(OH) ₂	углекислого газа]	как с гидр	роксида	рами металлов		Ag ₂ O(NH ₃)		-		V 2	\ i		•/	<u> </u>
П		na para	the war	THUE, A	очины	mery-m	ageocta a aanax,	-	e THANG	Offise his	очакие	UBETHEM	эслянис	Betress	Mache	×	TE SEES MADE	(С солями слабых кислот			+				Cl ₂ /Br ₂		1	7	100			+	+
l I		/ner)	thebt	adroag	ш	861486	Metallo M		enage l	8	l^l	8	294	gecn		Ш	ествел		Ag ₂ O(NH ₃)	+		ş	-			HNO ₃			U	*	1		ромат. дегиды)	(Аромат, кетоны)
				on, to		8	апкос				П					Ш			Cl ₂ /Br ₂	Окисление до углекислого газа	120	12			+	KMnO ₄ / K ₂ Cr ₂ O ₇		•		*			+	не в рамках ЕГЭ
						910				-	+				+	+		ij	KMnO ₄	Окисление до углекислого	128	+	+	+	+	Br _{2(p-p)}		21	0	A.	- 4		+	1
						e rowor			набалы	-				craptos	мотом				Br _{2(p-p)}	rasa +	-	- 1	+	100	+	FeCl ₃		•	15	-	•		4	
	ů,	5	J V	J.	1,52	NA OPERTY.	ű	100	SUP BILL	WAGGING.	3	ن ي	0 0	X KONCHOT IN	THE	3 3			нсі	10-20	+	-	tr.	+ Против правил		НВг Спирт		•	DHA	OÜH-	UKOAO		•	-
1	Ü	ů	0 0	ď	Б	ero an	Ű	б	BHF/34900	форма	S	ن ه	J b	йших ко	LINK KONCY	J J	o d		НВг Спирт	-	ntic	+	, N	против правил Марковникова)		Карбоновая кислота		+					50	-
Bound						e Haori a			STRIN					просте	Bad				Полимеризация		+	-	T	+		Amonbid					9 88			
	-	31.0		2	1			0			3			70							-		_											
		STREET, STREET,		праливн		ометие	инрты	Darower	Publica	UGHOU I	Appropri		NC/10/27	artic on		Depress	повствой																	
Į,		Arman		Line		₹	0	Meson	0		Ann		2	Comme		4	4	i																
Ē	=	-			0	603	начен	не	Ē	-		-	-		Ξ	-		-	• • • • • *Первичный атс	ом углерода	: связан с ол	ним углеро	одом (C-C-		<u>гомологи</u>	- вещест	гва одног	о класс	— — а, котор	ые отлича	е е	одну иг	 . 1и
S	Ами	шок	нел	ота		exő	уквен одно-	ное				-R				лекул форм	иярная ула	1.	**Вторичный ат ***Третичный а	ом углерода том углерод	а: связан с дв а: связан с тр	вумя углеро ремя углер	одамі одам	и -C- <mark>C</mark> -C- ли -C- <mark>C</mark> (C)-	С	нексколько ИЗОМЕРЫ -	СН₂-груп вещесті	П						
P	тиц	Hr.			3	букв	зенно		~H	ř						₉ H ₅ N		1	**** Четвертичн	ый атом угл	ерода: связа	н с 4 углер	одам	ии		структурной Молекулярн	ая форм	ула отрах	кает со	став веі	цества			
-	лиці лан					-	ly (G) la (A)		-	H ₃					****	$_{3}H_{5}N$. s	sp3-гибридизац	ия: атом уг	глерода име	ет только	один	нарные свя		Структурная	формул	па отража						
-	али					Va	al (V)		-		H ₃) ₂				C	5H11	NO ₂	,	угол связи 109, sp2-гибридизац	5; форма мо	лекулы: тетр	аэдр				Структурная	н изомер еродного с				2) Межклассі	овая		
	ейц золе	ин ейці	m		+		eu (L)		-	_	CH(C H ₃)-	_			_	6H ₁₃ N 6H ₁₃ N		٤	связи 120; sp-гибридизаци			тройную с	СВЯЗЬ	(2-пи и 1-	сигма); угол	V	00.751.000	₂-CH₂-CH₃		9211111	=C-CH ₂ -CI	PINANTA II		
п	ист	еин				Cy	s (C)		-C	H ₂ -	SH				C	BH7S	NO ₂	10	связи 180; фор	ма: линейна	Я			1892	-2	сн₅сн	-CH ₂ -CH ₂				CH-CH=CH			
-	ети ериі	н	н		+		et (M) er (S)		-	H ₂ -4	CH ₂ - OH	-S-C	:H ₃			5H ₁₁ S 3H ₇ N		į		sp² sp sp CH—C≡C-				sp ²	sp ²	сн₃-сн	3 -CH-CH₃	C ₆ H _{t4}			7	C ₆ H ₁₀		
-		n. mn					er (S) er (T)		-		H)-(СНа			_	₄ H ₉ N		i	sp³CH		Sp ³ en	3 sn²		sp ²	sp ²	100000000000000000000000000000000000000	CH ₃			_	7	-6' 110		
4	ени	лала	ания	1			ne (F)		-C	H ₂ -	C ₆ H ₅	5				₉ H ₁₁ ?		•		-0	ČH₃—Č	H ₂ —Ç=O)	SE	D ²	3) Полог	кения крат	ной связи	.4) Положен	ия функцион	альной гру	уппы	
Т	проз	31111				Ty	r (Y)		-0	H ₂ -	40	2>	– он		C	9H ₁₁ ?	NO ₃	ı				ÓН						-CH ₂ -CH ₃			1 ₂ -CH ₂ -CH ₂			
					+				-1	CH,	-									ФОРМУЛ	Ы						=CH-CH ₂ - ₂ -CH=CH-			CH3-CH	1 ₂ -CH ₂ -CH-1 OH	C ₅ H ₁	120	
T	рип	тофа	LH			Tr	rp (W))			(V	N			(C ₁₁ H ₁	N ₂ O ₂	I L	Алканы С _п Н _{2п+2} Циклоалканы С				IAЗВА етил (ІЕСТИТЕЛЕЙ:	: 2000/FDA 83	C ₆ H _{t2}			CH3-CH	H ₂ -CH-CH ₂ -1 OH	CH ₃		
											F	H						. /	Алкены С _п Н _{2п} Алкадиены С _п Н			Эт Пр	гил СІ опил	H ₃ -CH ₂ - 1 CH ₃ -CH ₂ -(CH₂-		15000				- Ori			
	спај тело	раги эта	нов	ая		A	sp (D)		-0	H ₂ -	-coo	Н			(C ₄ H ₇ N	104	1	Алкины С _п Н _{2п-2} Арены С _п Н _{2п-6}			Из Фе	вопро	пил (CH ₃) ₂ С ₆ H ₅ -	CH-	Цис-транс Важное ус.								1енов.
Γ.		ми	юва	Ħ		Gl	lu (E)		-0	H ₂ -	CH ₂	-co	ОН		(C ₅ H ₉ N	NO,	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡	Предельные од Предельные дв	ухатомные (спирты C _n H _{2n}	₊₁ ОН Бе	нзил	1 C6H5-CH2- 1 H2C=CH-		СП	-		1	Ус	дного ато	ма С зам		ль:
-		эта раги	н			-558	sn (N)		+	1000	-CO-	-			-	C ₄ H ₈ N	- 5	1	Альдегиды, Кет Углеводы С _п (Н₂	гоны С _п Н _{2п} О :O) _п		-	«XV		ЗВАНИЯ»:	C ₂ H ₅	`c-	=c/	-1	эти У д	л и водор ругог ато	од		
	_	мин					ln (Q)		-0	H ₂ -	CH ₂		-NH	2	-	C ₅ H ₁₀		(Простые эфирь Сложные эфир	ы R-COOR'		Me	етано	ат - СН₃ОN: рат - НСОО · - СН₃-СН₂	Na	H´	/-		C ₂ H ₅	ЭТИ	іл и хлор			
r	terr	сджи				127	ie /m		-(CH ₂ -	T,	1			1	C ₆ H ₉ N	L.O.	■ E	Первичные ами Вторичные ами	ны R-NH-R'				т - СН ₃ -СН ₂ т - СН ₃ -СО		1.65 mare = 1				у э	и различа того веще			
13	were	HMAN				H	is (H)				I	H				61191	302	7	Третичные ами Анилин С₅Н₅NН	ны R-N(R")-I I ₂						ГОРЕНИЕ (CxHy + O ₂ =	> CO ₂ + I	H ₂ O	ЕЩЕСТІ		меры			
Л	изи	н				Ly	ys (K)		-) ₄ -N				(C ₆ H ₁₄	N ₂ O ₂	í	Аминокислоты Природные ам	NH₂-CH(R)-0 иинокислоты		уппа у				CxHyOz + C CxHyNz + C	0 ₂ => CO ₂ 0 ₂ => N ₂ +	+ H ₂ O - CO ₂ + H ₂ O						
A	ргия	нин				A	rg (R)		7	(CH	2)3-	NH-	-C=		(C ₆ H ₁₄	N ₄ O ₂	1 6	альфа атома уг Фенолы С ₆ Н₅ч	лерода ОН (обяза	тельно ОН-					CxHyClz + (CxHyOcClz	O ₂ => CO ₂ + O ₂ => C	2 + H2O + H 2O2 + H2O	HCI + HCI					
			-										NH	2					связана с бензо							CxHyOcNaz CxHyOcNz	<u>z</u> + O ₂ =>	CO ₂ + H ₂ O	+ Na ₂ C	O ₃				
	_	_	_			_		_	_																									

ХИМ,СВ-ВА АЛКАНЫ ХИМ.СВ-ВА АЛКАДИЕНОВ ХИМ.СВ-ВА ЦИКЛОАЛКАНЫ ХИМ.СВ-ВА АЛКЕНЫ ИЗОМЕРЫ АЛКЕНОВ КЛАССИФИКАЦИЯ АЛКАДИЕНОВор од циго год IKAF циклы - разрыв цикла у гидрированного атома Положение двойной связи Изомерия углеродного скелета М е ж к л а с с о в а я и з о м е Кумулированные: CH_2 =C= CH_2 Сопряженные CH_2 =CH-CH= CH_2 Изолированные: CH_2 =CH-CH-CH=CHТри правила алкадиенов: *Если t высокая (+40+60) - 1,4 присоединение *Если t низкая (-40-60) - 1,2 Γ идрирование: $C_3H_6 + H_2 => C_3H_8$ ация, рост цепи,обрыв циклоалканы ИЗОМЕРЫ АЛКАДИЕНОВ Γ алогенирование: $C_3H_6 + Br_2 \Rightarrow C_3H_6Br_2$ Цис-трансизомерия присоединение цепи Положение двойной связи CH3-CH2-CH3 + Cl2 => CH3-CHCl-CH3 ПОЛУЧЕНИЕ АЛКЕНОВ избыток реагента Изомерия углеродного скелета межклассовая изомерия: А Дегалогенирование: R-CHCl-CH₂CI + Zn/Mg=> R-CH=CH₂ +ZnCl₂/MgCl₂ R-CH₂-CHCl-CH₃+NaOH(спирт.)=> +HCI Гидрогалогенирование: по правилу H₂C=CH-CH₂CI + HCI Гидрирование: Бромная вода; качественная р-ция Н₂С=CH-CH₃ + Вг₂ => Вгн₂С-СНВг-СН₃ Гидрогалогенирование CH3-CHCI-CH3 + Cl2 => CH3-CCl2-CH3 1,4: CH₂=CH-CH=CH₂ + H₂ => CH₃-Марковникова $C_3H_6 + HBr => CH_3-CH_2-CH_2Br$ $CH_3-C_3H_5 + HBr => CH_3-CH_2-CH_2Br-CH_3$ Большие циклы - без разрыва цикла 1,4: On2=On-On=On2 + n2 => On3-CH=CH-CH3 1,2: CH2=CH-CH=CH2 + H2 => CH3-CH2-CH=CH2 $\frac{\text{Нитрование:}}{\text{CH}_3\text{-CH}_3\text{+ HNO}_3} \Rightarrow \text{CH}_3\text{-CH}_2\text{-NO}_2 + \text{H}_2\text{O}$ ПОЛУЧЕНИЕ АЛКАДИЕНОВ *симметричные алкены: H_3C -CH=CH-CH $_3$ + HBr => H_3C -CHBr-CH-Изб.: CH₂=CH-CH=CH₂ + 2H₂ => CH₃-CH₂-CH₂-CH₃ Правило Зайцева: водород отщепляется от менее гидрированного атома углерода Дегидрирование алканов (kat Cr2O3) $CH_3-CH_2-CH_2-CH_3 \Rightarrow CH_2=CH-CH=CH_2$ <u>Изомеризация:</u> H₃C-CH₂-CH₂-CH₃ => H₃C-CH(CH₃)-CH₃ <u>Дегидрирование:</u> $C_6H_{12} \Rightarrow C_6H_6 + 3H_2$ H_3 C-CH₂-CH₂=> H_3 C-CH(CH Крекинг: C_nH_{2n+2} => C_xH_{2x} + C_pH_{2y+2} n = x + y 2n + 2 = 2x + 2y + 2Дегидрирование: обр.алкенов, алкинов, алкадиенов CH_3 -CH₃ => CH_3 -CH₂+ H_2 CH_3 -CH₃ => CH_2 -CH₂-CH₂+ $2H_2$ Галогенирование: *несимметричные алкены Галогенирование: + 2H₂ C₆H₁₂ + Br₂ => C₆H₁₁Br + HBr по правилу Марковникова (водород идет к более гидрированному атому Heranoreнирование: CH₂CI-CH₂-CH₂-CH₂CH+2NaOH(спирт.) =>CH₂=CH-CH=CH₂+2NaCI+2H₂O Правило Зайцева: водород 1.4: CHa=CH-CH=CHa + Cla => CHaCl-Дегидратация спиртов: $R-CH_2-CH_2OH \Rightarrow R-CH=CH_2 + H_2O$ 1,4: CH₂=CH-CH=CH₂ + Cl₂ ⇒ CH₂Cl-CH=CH-CH₂Cl 1,2: CH₂=CH-CH=CH₂ + Cl₂ ⇒ CH₂Cl-CHCI-CH=CH₂ изб.: CH₂=CH-CH=CH₂ + 2Cl₂ ⇒ CH₂Cl-CHCI-CHCI-CH₂Cl (в том числе бромная С6П₁₂ + BI2 ⇒ С6П₁₁BI + ПВІ <u>Нитрование:</u> С6Н₁₂ + HNO₃ => С6Н₁₁NO₂ + H₂O <u>ПОЛУЧЕНИЕ АЛКАНОВ</u> идет к оолее гидрированному атому углерода) Н₂С=CH-CH₃ + HBr => HH₂C-CHBr-CH₃ против правила Марковникова: если у двойной связи стоит: -COOH, -COOR, Γ идрирование алкинов: $C_2H_2 + H_2 => CH_2 = CH_2$ <u>P-ция Вюрца:</u> 2R-Cl + 2Na => R-R + 2NaCl отщепляется от менее гидрирова Крекинг алканов атома углерода R-CI + 2Na + R'-CI => R-R' + 2NaCI -COH. -CCI3. -CF3. -NO2. -CN => ПОЛУЧЕНИЕ ЦИКЛОАЛКЕНОВ вода) Легилратация многоатомных спиртов Р-ция Дюма: сплавление R-COONa + NaOH => R-H + Na₂CO₃ Р-ция Кольбе: электролиз 2R-COONa + 2H₂O => R-R + 2NaOH + <u>Дегалогенирование:</u>
CH₂C1-CH₂-CH₂-CH₂C1 + Zn/Mg=>
циклобутен+ZnCl₂/MgCl₂
циклобутен+NaOH(спирт) ⇒
циклогексен + NaOH + H₂O Дегидроциклизация; обр.аренов водород идет к менее) H₂C=CH-COOH + HBr => BrH₂C-CHH-Гидрогалогенирование CH₂OH-CH₂-CH₂-CH₂OH => $C_6H_{14} \Rightarrow C_6H_6 + 4H_2$ $C_7H_{16} \Rightarrow C_6H_5CH_3 + 4H_2$ Реакция Лебедева (ZnO, Al2O3); 2CH₃-CH₂OH ⇒ CH₂=CH-CH=CH₂ + H₂O $CH_4 + O_2 \Rightarrow CH_3 - OH$ 2CH₄ + O₂ => 2CH₃-OH 2CH₄ + O₂ => HCOH + H₂O <u>Гидратация</u> То же правила, что при 2CO2 +H2 Гидрирование алкенов, алкинов 1,2-дихлоциклогексен гидрогалогенировании $H_2C=CH-CH_3 + HOH=> HH_2C-CH(OH)-$ І идрирование алкенов, алкинов, алкадиенов, малые циклы циклоалканов СН₂сСН₂ ⇒ СН₃-СН₃ Гидролиз карбид алюминия AlaC₃ + 12H₂C ⇒ 4Al(CH)₃ + 3CH₄ AlaC₃ + 12HcI ⇒ 4AlCl₃ + 3CH₄ 2CH4 + 3O2 => 2HCOOH + 2H2O циклогексен + MqCl₂ 2C₂H₆ + 3O₂ => 2CH₃-COOH + 2H₂O 2C₄H₁₀ + 5O₂ => 4CH₃-COOH + 2H₂O CH₃ Дегидратация спиртов: продукт) Диеновый синтез: Кат.окисление этилена 2H₂C=CH₂ + O₂ => 2CH₃-CHO (Cu-PdCl₂) 2H₂C=CH₂ + O₂ => эпоксид пиклогексанол => пиклогексен + H₂O <u>диеновыи синтез;</u> Присоединение алкена или алкина по 1,4: CH₂=CH-CH=CH₂+ CH₂=CH₂=> {-CH₂-CH=CH-CH₂- + -CH₂-CH₂-} => Пиролиз метана (1500 градусов): $2CH_4 \Rightarrow C_2H_2 + 3H_2$ ХИМ.СВОЙСТВА ЦИКЛОАЛКЕНОВ *как алкены, те же правила Мягкое окисление ПОЛУЧЕНИЕ ЦИКЛОАЛКАНОВ Гидрирование: циклогексен+ H₂ => циклогексан Синтез Фишера-Тропша Образование диолов 3R-CH=CH₂ + 2KMnO₄ + 4H₂O => 3Rциклогексен <u>Дегалогенирование:</u> CH₂CI-CH₂-CH₂CI + Zn/Mg => C_3H_6 nCO + (2n+1)H₂ => C₀H_{2n+2} Полимеризация: 3H-CH=CHz + 2КМпО₄ + 4HzO => 3H-CH(OH)-CHz(OH) + 2MnO₂ + 2KOH 3R-CH=CH-R' + 2КМпО₄ + 4HzO => 3R-CH(OH)-CH(OH)-R' + 2MnO₂ + 2KOH Жесткое окисление (КМпО₄, К<С₇₂От); R-CH=CH+F' | O|=>R-COOH + R'-COOH R-CH=CH-R' + | O|=>R-COOH+ R'-COOH R-CH=CH-R' + | O|=>R-COOH+ R'-C(O)-<u>Гигдрогалогенирование:</u> циклогексен+ HBr => бромциклогексан Алкены, алкадиены вступают в + ZnCl₂/MgCl₂ глікены, алкадиены вступают в реакцию с образованием полимеров Жесткое окисление (КМпО₄, К-Сг₂О CH₂=CH-CH-CH=CH₂+ [O] => HOOC-COOH + CO₂ Галогеннирование: _ циклогексен+Cl₂ => 1,2-дихлорциклогексан Гидратация: _ циклогексен+ H₂O => Гидрирование циклоалкенов: Циклогексен + H₂ => циклогекс Гидрирование аренов C6H6 + 3H2 => C6H12 Жесткое окисление: циклогексен адипиновая к-та Мягкое окисление: циклогексен => циклогександиол-1,2 ПОЛУЧЕНИЕ АЛКИНЫ <u>лим.СВ-ВА АЛКИНЫ</u>
*нед.реагента => разрыв одно пи-связи
*изб.реагента => разрыв сразу двух писвязи ХИМ.СВ-ВА АЛКИНЫ ХИМ.СВ-ВА АРЕНОВ ХИМ.СВ-ВА СПИРТОВ ХИМ.СВ-ВА КАРБОНОВЫХ К-Т ОСОБЫЕ СВОЙСТВА <u>ОСОБЫЕ СВОИСТВА</u>

<u>Муравьиная к-та:</u>

HCOOH + Cl₂ ⇒ 2HCl + CO₂

HCOOH + 2[Ag(NH₃)₂]OH ⇒ (NH₄)₂CO₃ + 2Ag + 2NH₃ + H₂O

5HCOOH + 2KMnO₄ + 3H₂SO₄ ⇒ <u>Металы (до водорода):</u> 2R-COOH + 2Na ⇒ 2R-COONa + H₂ 2R-COOH + Ba ⇒ 2(R-COO)₂Ba + H₂ ПРИСОЕЛИНЕНИЕ <u>Щелочные металлы</u> алкоголят R-OH + Na ⇒ R-ONa + H₂ R-ONa + H₂O ⇒ NaOH + R-OH <u>Дегалогенирование:</u> R-CCl₂-CHCl₂ + Zn/Mg=> R-CCH ПРИСОЕДИПЕНИЕ: <u>Гидрирование:</u> обр.циклоалканов $C_6H_6 + H_2 \Rightarrow C_6H_8$ $C_6H_5CH_3 + H_2 \Rightarrow C_6H_7CH_3$ H-CCI₂-CHCI₂ + Zn/Mg=> H-C +ZnCl₂/MgCl₂ R-CH₂-CCl₂-CH₃+2NaOH(спирт.)=> R-CCH+2NaCl+2H₂O R-CHCl-CHl₂Cl+2NaOH(спирт.)=> R-CCH+2NaCl+2H₂O Γ идрирование пропин + $H_2 \Rightarrow H_2C=CH-CH_3$ пропин + $2H_2 \Rightarrow H_3C-CH_2-CH_3$ <u>Галогенводородами:</u> R-OH + HCl => R-Cl + H₂O <u>Оксиды металлов:</u> 2R-COOH + BaO => 2(R-COO)₂Ba + Галогенирование: только бензол на 5CO2 + MnSO4 + K2SO4 + H2O С аммиаком и аминами: H₂O , + 3Cl2 => CeHeCle Γ алогенирование пропин + $Cl_2 \Rightarrow HCIC=CCI-CH_3$ R-OH + NH₃ => R-NH₂ + H₂O R-OH + NH₂-R => R'-NH-R + H₂O Гидроксид металлов HCOOH => H₂O + CO (действие R-COOH + NaOH => R-COONa + H₂O Дегидрирование алканов и алкенов: ЗАМЕЩЕНИЕ: конц.серной кислоты) пролин + Cl₂ => HClCG=CCH-CH₃
пролин + Cl₂ => HClCG-CCl₂-CH₃
<u>Бромная вода;</u> качественная р-ция
пролин + 2Br₂ => HBr₂C-CBr₂-CH₃
<u>Гидрогалогенирование</u>
по правилу Марковникова (водород <u>Дегидратация:</u> t >140 R-OH => -CH=CH + H₂O t <140 R-OH => R-O-R+ H₂O R-COOH + Na2OH => R-COONa + R₂O <u>CO Спиртами:</u> R-COOH + R'-OH <=> R-COOR' + H₂O <u>C солями слабых кислоты:</u> 2R-COOH + Na₂CO₃ <=> 2R-COONa + CO₂ + H₂O Непредельные кислоты: H₂C=CH-COOH +H₂ => H₃C-CH₂ C3H8 => C3H4 + H2 Свтв => Свтв + 1-12 Алкилирование ацетиленидов; R-CCAg + CH₃Cl => AgCl + R-CC-CH₃ Пиролиз метана (1500 градусов) 2CH₂ => C₂H₂ + 3H₂ COOH H₂C=CH-COOH +HCl => ClH₂C-CH₂-<u>Этерификация (с к-тами):</u> R-OH + HNO₃ => R-ONO₂ + H₂O R-COOH + R'-OH <=> R-COOR' + H₂O $nH_2C=CH-COOH \Rightarrow -(-CH_2-CH(-)$ идет к более гидрированному атому Гидролиз карбида кальция <u>Нитрование:</u> $C_6H_6 + HNO_3 => C_6H_5NO_2 + H_2O$ <u>С галогенидами фосфора:</u> R-COOH + PCI₅ <=> R-COCI + HCI + углерода) $CaC_2 + 2H_2O => Ca(OH)_2 + C_2H_2$ С альдегидами и кетонами COOH)n COOH)n $C_{17}H_{35}COOH + H_2 \Rightarrow C_{17}H_{35}COOH C_{17}H_{29}COOH + 3H_2 \Rightarrow C_{17}H_{35}COOH$ <u>Шавелевая к-та:</u> $5HOOC-COOH + 2KMnO_4 + 3H_2SO_4$ $10CO_2 + 2MnSO_4 + K_2SO_4 + 8H_2O$ СеНа Н HNO3 => CeH4 (NO2) CH3+ H2(Сма альдегидами и кет-онами (2+нитротолуол или 4-нитротолуол) Алкилирование галогеналканами СеНа + CH3Cl=> CeH5CH3 + HCl

CeHa + CH3Cl=> CeH5CH3 + HCl

R-CH(OH)-R' > R-C(O)-R' + Cu + H2O пропин + HBr => HHC=CBr-CH₂ CaC₂ +2HCl => CaCl₂ + C₂H₂ POCI₃ Галогенирование (kat. Ркр): R-CH₂-COOH + Cl₂ <=> R-CHCl-COOH + HCl пропин + 2HBr => H₂HC-CBr₂-CH₃ Гидратация (kat. соли ртути) ИЗОМЕРЫ АРЕНОВ Положение функциональны групп Строение заместетителей этин => этаналь <u>С аммиаком:</u>
*без нагрева:
R-COOH + NH₃ <=> R-COONH₄ другие Алкины => кетонь Алкилирование алкенами $C_6H_6 + CH_2=CH_2 \Rightarrow C_6H_5CH_2-CH_3$ Окисление: ПОЛУЧЕНИЕ АРЕНОВ первичные спирты => альдегиды <u>Димеризация этина</u> $2C_2H_2 \Rightarrow CH_2=CH-CCH(винилацетилен)$ ХИМ.СВОЙСТВА АМИНОКИСЛОТ Дегидрирование циклоалк циклогексан $=> C_6H_6 + 3H_2$ Дегидрирование алканов: $C_6H_4 => C_6H_6 + 4H_2$ $C_6TI6+CTI2=CTI2=CV_6TI8-CTI3$ Алкилирование этином $C_6H_6+C_2H_2=>C_6H_5CH=CH_2$ <u>Боковой цепи:</u> гомологи бензола на свету замещают галоген в боковой цепи: *первичные спирты => карбоновые Аминокислоты проявляют свойства *с нагревом: R-COOH + 2NH₃ <=> R-CONH₂ + H₂O 2H₂C=CH₂ + O₂ => эпоксил сиспоты карбоновых кислот (см.карбоновые $2 n_2 (-10 n_2 + 0)_2 = 9$ эпоксид Тримеризация этина $3 C_2 h_2 = > C_6 H_6$ АЛКИНЫ С ТЕРМИНАЛЬНОЙ СВЯЗЬЮ *вторичные спирты => кетонь к-ты) и свойства аминов (см.амины) Образование ангидридов (kat.P2O5): 2R-COOH => (R-CO)₂O + H₂O $COOH = NH_2$ COH + NH_2 COH + NH_2 COH (R')-COOH + NH_2 COH + NH_2 COH (R')-COOH + NH_2 COH + Алкилирование аренов: У многоатомных спирто к этому списку см.хим.свойства аренов $C_6H_5CH_3 + Cl_2 => C_6H_5CH_2Cl$ добавляется реакция с Cu(OH)2 <u>Щелочные металлы:</u> 2R-CCH + 2Na => 2R-CCNa + H₂ Тримеризация этина Жесткое окисление (KMnO₄, K₂Cr₂O₇): ПОЛУЧЕНИЕ КАРБОНОВЫХ К-Т 3C2H2 => C6H6 ПОЛУЧЕНИЕ СПИРТОВ <u>Аммиачный раствор оксида серебра:</u> образование ацетиленидов (осадков) !бензол не окисляется! Щелочной гидролиз тригалогеналканов R-CCl₃ + 4NaOH => R-COONa + 3NaCl Weлoчной гидролиз дипептидов NH₂-CH(R)-CONH-CH(R')-COOH + 2NaOH ⇒ NH₂-CH(R)-COONa + NH₂-С₆Н₅СН₃ + [O] => С₆Н₅СООН С₆Н₅СН₂-СН₃ + [O] => С₆Н₅СООН + CO₂ Декарбоксилирование солей Щелочной гидролиз тригалогеналканов: R-CH₂CI + NaOH(водн)=> R-CH₂OH <u>бензойной к-той:</u> С₆H₅COONa +NaOH => Na₂CO₃ 2H₂O R-COONa + HCl => R-COOH + NaCl $R-CCH + [Ag(NH_3)_2]OH => R-CCAg +$ $U_1 = U_2 = U_3 + U_3 = U_3 + U_3 = U_3 + U_3 = U_3$ H₂O + 2NH₃ CH(B')-COONa + H₂O Жесткое окисление (КМп O_4 , $K_2Cr_2O_7$): R-CCH + [O] => R-COOH + CO_2 R-CC-R' + [O] => R-COOH + R'-COOH + NaCl R-CHCI-CH₃ + NaOH(водн) CH(OH)CH₃ + NaCl СН(R)-СООНА + Н2О

КИСЛОТНЫЙ ГИДРОЛИЗ ДИПЕПТИДОВ

NH2-CH(R)-CONH-CH(R')-COOH +

2HCl + H2O ⇒ [NH3-CH(R)-COOH]Cl

+ [NH3-CH(R')-COOH]Cl Окисление алкенов, алкинов Алкилирование галогенаренов: $C_6H_5CI + CH_3CI + 2Na \Rightarrow 2NaCI +$ алкадиенов, первичных спиртов, альдегидов и др. <u>KMnO₄, K₂Cr₂O₇</u> Гидрирование: -CH=CH $_2$ + H $_2$ => -CH $_2$ -C₆H₅CH₂ Окисление альдегидов $Cu(OH)_2$: R-CHO + $2Cu(OH)_2$ => R-COOH + Cu_2O ОРИЕНТАНТЫ В КОЛЬЦЕ

I рода: -OH, -HaI, NH_2 -группа, алкильные радикалы => новый радикал в стает или в орто(2-), или в CH₃ Гидратация алкенов ИЗОМЕРЫ АЛКИНОВ Гидратация: -CH=CH₂ + H₂O => -CH(OH)-Восстановление альдегидов <u>ИЗОМЕРЫ АЛКИНОВ</u>
Положение тройной связи
Изомерия углеродного скелета
межклассовая изомерия: алкады ПОЛУЧЕНИЕ АМИНОКИСЛОТ Гидролиз сложных эфиров Получение метанола: CO + H₂ CH₃OH $2 h_2 O$ Водный гидролиз сложных эфиров: R-COOR' + $h_2 O$ => R-COOH + R'OH Каталитическое окисление алканов: $2 C_4 H_{10} + O_2 => 4 C H_3 - COOH + 2 H_2 O$ Галогенирование: -CH=CH $_2$ + Br $_2$ -CHBr-CH $_2$ Br Гидролиз белков и пептидов <u>Из карбоновых кислот:</u> R-CH₂-COOH + Cl₂ => R-CHCl-COOH циклоалкены пара(4-) положение II рода: -CHO, -COOH, -NO₂ Гидрогалогенирование: -CH=CH $_2$ + HCI => -CHCI-CH $_3$ + HCI R-CHCI-COOH + 2NH₃ CH(NH₂)-COOH + NH₄CI Спиртовое брожение глюкозы: в мета (3-) положе Мягкое окисления: -CH(OH)-CH₂(OH) образование этанола Гидролиз эпоксиэтана XИМ_СВОИСТВА КЕ 10 ПОВ ВОССТАНОВЛЕНИЕ: R-CO-R¹ + H2=> R-CH(OH)-R¹ R - любой углеводородный радикал Со с π и ртами: об разование полукеталей/кеталей Полукеталь: R-CO-R¹ + H0-R¹ => R-C(OH)R¹-O-R¹ + H2O; кеталь: R-CO-R¹ + 2H0-R¹ => R-C(O-R¹)2-O-R¹ + 2H2O ← HCN: хим.свойства кетонов ХИМ.СВОЙСТВА ФЕНОЛОВ хим свойства амины ХИМ.СВОЙСТВА УГЛЕВОЛОВ ХИМ.СВОЙСТВА АЛЬДЕГИДОВ ПОЛУЧЕНИЕ АЛЬДЕГИДОВ C активными металлами: $2C_6H_5ON_4 + H_2$ Феноляты слабее угольной кислоты: $C_6H_5ON_4 + H_2O + CO_2 \Rightarrow NaHCO_3$ Увеличение силы основных свойств: фениламин < аммиак < третична амины < первичные амины Глюкоза: С водородом, с Сu(OH)₂-как многоатомный спирт, так и альдегид, с аммиачным раствором оксида серебра, бромной водой Окисление первичных спиртов: R-CH₂-OH + [O] => R-CHO [O] - KMnO₄, K₂Cr₂O₇ R-CH₂-OH + CuO => R-CHO + <u>Восстановление:</u> R-CHO + H₂=> R-CH₂-OH H-CHO + H₂=> H-CH₂-OH R - любой углеводородный радикал CH₃-CHO + H₂=> CH₃-OH <u>CO спиртами</u>: образование полуацеталей/ацеталей Полуацеталей: R-CHO + HO-R' ⇒ R-CH(OH)-OF' + H₂O; ацеталь: R-CHO + 2HO-R' ⇒ R-CH(OR)-O-R' + 2H₂O вторичные амины H₂O C₆H₅OH C кислотами: CH_3 - NH_2 + HCI => $[CH_3$ - $NH_3]CI$ Брожжение глюкоз => => $C_2H_5OH + CO_2$ Дегидрирование спиртов: R-CH₂-OH => R-CHO + H₂ C щелочами: $C_6H_5OH + NaOH => C_6H_5ONa + H_2O$ <u>С галогеналканами:</u> CH₃-NH₂ + CH₃-CI => [CH₃-NH₂-CH₃]CI => CH3-CH(OH)-COOH Сенз/ОН + NAUH = > Сенз/ОНА + НЗ/О С хлоридом железа (III); качественная р-ция на фенол. Образуется фиолетовое окращивание <u>Галогенирование</u>; ОН-группа ориентант | рода, поэтому или орто-=> CH₃-CH₂-CH₂-COOH + 2CO₂ + 2H₂ <u>Гидратация этина(!):</u> $C_2H_2 + H_2O => CH_3-CHO$ <u>C HCN:</u> R-CO-R' + HCN => R-CR"(OH)-CN Последующий гидролиз: к Спз-ипг + Спз-Сп \Rightarrow (Спз-ипг-Спз)Сп $\stackrel{?}{\sim}$ азотистой кислотой:

*первичные амины \Rightarrow азот

*вторичные амниы \Rightarrow нитрозамин

СН₃-NH₂ + HNO₂ \Rightarrow N₂ + CH₃OH + H₂O Фруктоза: С водородом, с Cu(OH)₂-как многоатомный спирт Дисахариды и полисахариды 2HO-H '=> H-CH(OH)-O-H' + 2H₂O CHCN: R-CHO + HCN => R-CH(OH)-CN Последующий гидролиз: Кислотный: H-CH(OH)-CN + $2H_2O$ => R-CH(OH)-COOH + NH₃ Шелочной: R-CH(OH)-CN + KOH + H_2O => R-CH(OH)-COOK + NH_3 Окисление этена кислородом с kat.: $2C_2H_4 + O_2 \Rightarrow 2CH_3$ -CHO <u>гидролиз</u> альдегидов гидрола ХИМ.СВОЙСТВА СЛОЖНЫХ дигалогеналканов, галогены на <u>Галогениды фосфора:</u> R-CO-R' + PCl₅ => R-CCl₂ -R'₂ + POCl₃ (2-)или пара-положение (4-): $C_6H_5OH + Cl_2 \Rightarrow C_6H_4CIOH + HCl$ <u>С солями:</u> С растворимыми солями, выпадение ЭФИРОВ
ВОЛНЫЙ И ШЕЛОЧНОЙ ГИДООЛИЗ
R-COOR* + H₂O <=> R-COOH + R'OH
R-COOR* + NaOH=> R-COONa + R'OH
+ H₂O СвН₅OH + Cl₂ \Rightarrow CsH₄ClOH + HCl (2-хлорфенол) или 4-хлорфенол) С <u>бормной водой</u>: качественная р-ция, образуется бельій осадок - 2,4,6 -трибромфенол СвН₅OH + 3Br₂ \Rightarrow CeH₂Br₃OH + 3HBr <u>Нитрование</u>: OH-группа ориентант I рода, поэтому или орто- (2-)или пара-положение (4-): одном атоме углерода первичном: R-CHHal₂ + NaOH(водн.) \Rightarrow R-CHO + Галогенирование: замещение водорода происходит у менее гидрированного атома углерода осадка: AICl₃ + 3CH₃-NH₂ + 3H₂O => AI(OH)₃ + 3[CH-NH₃]CI СПЕЦИФ.СВ-ВА АНИЛИН Галогениды фосфора: ИЗОМЕРЫ АЛЬДЕГИДОВ ПОЛУЧЕНИЕ КЕТОНОВ R-CHO + PCI₅ => R-CHCI₂ + POCI₅ OKMORÐHUS ETDHUSHNIK CHIPTOB: $O(H(OH)-R' + [O] \Rightarrow R-CO-R'$ $O(D) + MMOA, K_2C_2O_7$ $O(D) + MMOA, K_2C_2O_7$ $O(D) + MMOA, K_2C_2O_7$ O(D) + CU O(D) +п-спо + Роіз => н-споіз + Росіз Галогенирование: по альфу-атому углерода (первый атом углерода после -СНО) бромной водой: 2,4,6 <u>Гидрирование:</u> $H_2C=CH-COOR'+H_2=>H_3C-CH_2-$ Изомерия углеродного скелета Межклассовая изомерия с кетон триброманилин $C_6H_5NH_2 + 3Br_2 => C_6H_5NH_2Br_3 + 3HBr$ COOR' ТРИВИАЛЬНЫЕ НАЗВАНИЯ <u>Нитрование:</u> сначала образуется фениламмония, а потом идет положение (4-): C₆H₅OH + HNO₃ => C₆H₄(NO₃)OH + Особен эфира винилового спирта R-CH₂-CHO + Cl₂ => R-CHCl-CHO + HCl Метаналь (муравьиный альдегид) R-COO-CH=CH₂ + H₂O <=> R-COOH C гидроксидом меди (II): R-CHO + 2Cu(OH)₂ => R-COOH + Cu₂O HCOH свльсоп + пиоз => свла(моз)оп + Н₂O(2-нитрофенол) Избыток азотной кислоты: 2,4,6-тринитрофенол = пикриновая кислота CH₃-CHO <u>Дегидрирование спиртов:</u> R-CH(OH)-R' => R-CO-R' + H₂ Этаналь (уксусный альдегид) ПОЛУЧЕНИЕ + 2H2O CH₃-CHO Этерификация (спирт + к-та) <u>XИМ.СВОЙСТВА ЖИРОВ</u> !!!HCOH + 4Cu(OH)₂ => CO₂ + 2Cu₂O + Пропаналь (пропионовый альдегид) СН₃-CH₂-CHO Гидратация алкина: пропин + H₂O => CH₃-CO-CH₃
$$\begin{split} & \text{!!!HCOH} + 4\text{Cu(OH)}_2 \Rightarrow \text{CO}_2 + 2\text{Cu}_2\text{O} + 5\text{H}_2\text{O} \\ & \text{C}_1\text{Ag(NH}_3)_2\text{]OH}; \\ & \text{R-CHO} + 2[\text{Ag(NH}_3)_2]\text{OH} \Rightarrow \text{R-COONH}_4 \\ & + 2\text{Ag} + 3\text{NH}_3 + \text{H}_2\text{O} \\ & \text{!!HCOH} + 4[\text{Ag(NH}_3)_2]\text{OH} \Rightarrow \text{(NH}_4)_2\text{CO}_2 \\ & + 4\text{Ag} + 6\text{NH}_3 + 2\text{H}_2\text{O} \end{split}$$
 Γ идрирование: $C_6H_5OH + 3H_2 => C_6H_{11}OH$ Гидролиз (как у сложных эфиров) жир + Н₂О <⇒ ВЖК + глицерни ВЖК- высшая жирная кислота Гидрирование: если вжк имеет Пролин + п₂О = 2 Спз-Со-Спз В одный гидролиз дигалогеналканов, галогены на одном атоме углерода (вторичный); R-CHal₂-R' + NaOH(водн.) ⇒ R-CO-R' Бутаналь (масляный альдегид) Альдегидами: с формальдегидом с о б р а з о в а н и е м фенолформальдегидной смолы Окисление: до хинона CH3-CH2-CH2-CHO ПОЛУЧЕНИЕ АМИНОВ Cпирты + аммиак: CH_3 -OH + NH_3 => CH_3 - NH_2 + H_2 O ИЗОМЕРЫ КЕТОНОВ кратную связь: Жидкий жир + H₂ => твердый жир + 2NaHal Изомерия углеродного скелета Положение функ.группы Межклассовая изомерия с + 449,+ 6NH5,+ 2H₂U

С <u>бромной водой</u>; обр.карбонова кислота

R-CHO + Br₂ + H₂O => R-COOH + 2HBr

ШНСОН + 2Br₂ + H₂O => CO₂ + 4HBr

Окисление; обр. карбоновая кислота Термолиз солей карбоновых к-т Са, CH_3 -CH(OH)- CH_3 + NH_3 => CH_3 - $CH(NH_2)$ -ПОЛУЧЕНИЕ ФЕНОЛОВ СП₃ - N₂O <u>Галогеналкан с изб.аммиаком:</u> CH₃-CI + 2NH₃ => CH₃-NH₂ + NH₄CI

*с нед.аммиака образуется соль амина КАЧЕСТВЕННЫЕ РЕАКЦИИ БЕЛКИ <u>Кумольный способ:</u>
C₆H₅CH(CH₃)₂ + O₂ => C₆H₅OH + CH₃-CO-CH₃ (CH₃COO)₂Ca =>CaCO₃ + CH₃-CO-*Биуретова реакция => с Cu(OH)2 образование сине-фиолетового цвета *Ксантопротеиновая реак конц.азотной ки Щелочной гидролиз хлорбензола: ТРИВИАЛЬНЫЕ НАЗВАНИЯ ТРИВИАЛЬНЫЕ НАЗВАНИЯ $R-CHO + KMnO_4 + H_2SO_4 => R-COOH +$ Восстановление нитросоединений: стадия - образование фенолята: C₆H₅Cl + 2KOH => C₆H₅OK + KCl + H₂O конц.азотной кислотой образование желтого окрашивания MnSO₄ + K₂SO₄ + H₂O Ацетон (пропанон) СН₃-CO-CH₃ <u>ФЕНОЛОВ</u> R-NO₂ + 3Zn + 7HCl => [R-NH₃]Cl
$$\begin{split} \text{wildus4} + \text{R}_2\text{OU}_4 + \text{H}_2\text{U} \\ \text{R-CHO} + \text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4 => \text{R-COOH} + \\ \text{Cr}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4 + \text{H}_2\text{O} \\ \text{R-CHO} + \text{KMnO}_4 + \text{KOH} => \text{R-COOK} + \\ \text{K}_2\text{MnO}_4 + \text{H}_2\text{O} \end{split}$$
Метилфенол (орто-, мета-37nCl₂ + 2H₂O 2ая стадия: образование фено. C₆H₅OK + HCl => C₆H₅OH + KCl $32 \text{Fid}_2 + 2 \text{H}_2 \text{O}$ $R - \text{NO}_2 + 3 \text{Fe} + 7 \text{HCl} \implies [\text{R-NH}_3] \text{Cl} + 3 \text{Fe} \text{Cl}_2 + 2 \text{H}_2 \text{O}$ $R - \text{NO}_2 + 2 \text{Al} + 2 \text{KOH} + 4 \text{H}_2 \text{O} \implies \text{R-NH}_2 + 2 \text{K}[\text{Al}(\text{OH})_4]$ (если в белках есть аминокислоты с C_6 Н $_5$ ОК + HCI = > C_6 Н $_5$ ОН + KCI Анилин с азотистой кислотой: C_6 Н $_5$ NH $_2$ + HNO $_2$ => N $_2$ + H $_2$ O + C_6 Н $_5$ OH . бензольным кольцом) *С солями свинца => образова черного осадка

разно водор кисло Сильн Измен среды Сильн гидрол идет(и	ая кис сть м ода (га силі ые осн іение к сам ая кис пиз по пиз по	между а больше ьная) нования: рН в р ой щело слота > о катион	СІ, НВг, итомам или р щелоч яду (о чной) слабая у > с он и	НІ, Нх и кис равно и т сами кисло оль ги анион	кЭОу (ес. порода двум, ой кислю ота > со. пролиз у) > со. створим	и то ой пь не пь	крист (гепта Решен Для п Моля Ех: М(Колич	аллоги ігидрат ние зад онимаі оная м CuSO4 ³ іество	драты: Сц г сульфат цач на кри ния (писа- асса крис *5H ₂ O) = М вещества	ISO4*5H2O - железа); Nа сталлогидр гь реакции таллогидра I(CuSO4) + 5 кристалло	- меднь a ₂ CO ₃ *1 рат (вах не над ата: М(с 5*М(Н ₂ С огидрат огидрат	— соста ій куп 0H ₂ O - кные і о): кри соли) + Соли) + 16 а (мол а = кол	ав ко орос - крис моме істалі - п*М Ог/мс пь) = к	(пентагидрат сульфата м сталлическая сода, CaSO	меди); F D ₄ *2H ₂ O во воды /моль ли (мол	іь)	1	$n = \frac{m}{M}$ $n = \frac{V}{V_m}$ $\rho = \frac{m}{V} = \frac{m}{V_m}$	M - W	месса ве молярна 1 — кол / — объ / _m — мо р- пе	еществи ви масса пичест ьем ве олярны – плот ервая (а вещества гво вещес ещества [л ый объем гность вец формула	[г/моль] тва [моль]	і] веществ		
			1000						× 1	и (-	ASJIC			Е ХЛОРА	ТОВ И ПЕРХЛОРАТОВ							ная плотнос		nu V	
раствора	нейтрально	04C70s	щелочная	1	трольно			°+05	+ 02 + 02 + 02		5		5 +	Хлорат (без kat.)		4KCIO ₃ → 3KCIO ₄ + KCI	9	$D_x = \frac{M_1}{N}$	$M_{\rm v}$	N.	M _{a-na} -	молярная	ная плотнос масса веще асса веще	јества [г	/моль]	
HOro	зора ней	створа (раствора щ		офо нед		NO ₂ + O ₂	02)2 +	4NO ₂ + 4NO ₂		ZAG + ZNO2 +	2 + 2NO2		Хлорат (с kat.) Перхлорат		$2KCIO_3 \Rightarrow 2KCI + 3O_2$ $KCIO_4 \Rightarrow KCI + 2O_2$	1	N					ства [моль]		.01.733.2	
20	8	eda par (cnef	Cpeda pact		a pocta		KMC/NOP	► Ba(NO ₂) ₂	4 2Li₂0 +	л, окс	HME)	↑ MnO		РАЗЛОЖЕНИЕ КА		ОВ И ГИДРОКАРБОНАТОВ арбонаты всех метаплов разлагаются, кроме	i	$n = \frac{N}{N_A}$	3	N – KO	личес	тво атомо		¹³ [моль-	η	
Среда	Cpesta	G	ð		CpeAla	80	NO. =	Ba(NO ₃) ₂ ⇒	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	weran 1	1 1	Mn(NO ₃) ₂	î l	Карбснаты	щ	рлочных метаплов (исключение литий) $Li_2CO_3 \Rightarrow Li_2O + CO_2$ $CaCO_3 \Rightarrow CaO + CO_2$	i						вещества [9			
					ž Ž	HINTPATOB	Oбразуется нитрит и кисл 2KNO ₃ → 2K	Ba(N	Obpazyercs oксид KNCAODDA 4LINO3 ⇒ 2Cu(NO3)2 **	Образуется металл, оксид			ON DE	Гидрокарбонаты		дрокарбонаты разлагаются на карбонаты, пекислый газ и воду Са(HCO₃)₂ ⇒ СаCО₃ + H₂O + CO₂	Ĭ.	$\eta = \frac{\mathrm{m_n}}{\mathrm{m_n}}$	reon × 1	100%	m	п _{прект} — мас	са, получе са, которая	нная на		: [r]
	не идет	жетиом	номн		по мати мону		Образ		Образ Кислод	Образ	HINTPATOB		4	*разложение малахита (гидроксокарбоната меди		(CuOH) ₂ CO ₃ → 2CuO + H ₂ O + CO ₂						олучиться	в теории [r]		
TOP-LOS	Sales Sa Sales Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	DANKS NO	oras no		70 and	РАЗЛОЖЕНИЕ							9	РАЗЛОЖ Хлорид аммония	жение с	ОЛЕЙ АММОНИЯ NH4Cl ⇒ NH3 + HCl		$s = \frac{m_{B}}{m_{B}}$	<u>-ва</u> × 1	00	s – pa m _{e-sa}	астворимо – масса в	ость вещес ещества [г]	тва [г/10 	Or]	
G	Page 1	ag.	Pag.		мироли	PA3	3		J • L	[Hg-Au]	РАЗЛОЖЕНИЕ	E (Карбонат и гидрокарбона аммония	ат	(NH ₄) ₂ CO ₃ ⇒2NH ₃ + H ₂ O + CO ₂ NH ₄ HCO ₃ ⇒NH ₃ + H ₂ O + CO ₂	Ĺ	m,	оды		m _{воды}	, – масса ε ω – мас	воды [г] совая дол	тя вещ	ества [%]	1
5	a 7) II	2	3			Ph. No.	.	Metann: [Mg-Cu]	至	PA3Л	марганца	железа	Сульфат и гидросульфат амм	мония	(NH ₄) ₂ SO ₄ ⇒NH ₃ + NH ₄ HSO ₄ NH ₄ HSO ₄ ⇒NH ₃ + H ₂ O + SO ₃	ú	$\omega = \frac{m_i}{m}$	ofm	100%	6	$m_{n-n\alpha} - r$	масса веш масса раст	ества [r]	i Ž
CTBO	мслат	ependi v Cente	снованн нислото	CHORGINE	1 M CSB		Meron		Tenn:	Merannis:		Нитрат м	Нитрат	Нитрат и нитрит аммония Дихромат аммония	MM .	$NH_4NO_3 \leftrightarrow N_2O + 2H_2O$ $NH_4NO_2 \Rightarrow N_2 + 2H_2O$ $(NH_4)_2Cr_2O_7 \Rightarrow N_2 + Cr_2O_3 + 4H_2O$	2					- 3	мная доля			
Веще	ильная.	амфот роксид	negas o	agos oc	томоф.				We	*		₹ :	Ī	РАЗЛОХ	жение т	ПЕРМАНГАНАТА		$\varphi = \frac{V_{i}}{V_{i}}$	<u>з−ва</u> × 1	.00%		V _{в-во} - об	мная доля ъем вещес ъем раств	тва [л]		
Gen	a (5 g	8	5	ž									Перманганат		2KMnO ₆ ⇒ K ₂ MnO ₆ + MnO ₂ + O ₃	į.	V	общ			V 05щ − 00	осм раств	ора/сме	en [/I]	
	O ₂	S H	Hals	p	c	N ₂	S				7	META		СО СЛОЖНЫМИ		<u>МЕТАЛЛЫ СО СЛОЖНЫМИ</u>	7		ллы со		КНЫМ	 <u>1И</u>			о сложі	ными
IA I	Lizo	K ₂ S KH		K ₃ P	-	K ₃ N						ВОД	ЭЙ:	<u>ЩЕСТВАМИ</u> металлами (щелочные		ВЕЩЕСТВАМИ ИСЛОТЫ-ОКИСЛИТЕЛИ (т.е. ная к-та и конц.серная кислота):		І ОКСИДЫ: перод:	ВЕЩЕСТЕ	<u>BAMU</u>			В) ЩЕЛО ⁴ *cepa:	ВЕЩЕС НИ:	<u> і ВАМИ</u>	
IIA	MgO CaO BaO	MgS Bal BaS Mgi	ty SaHat		BaC ₂ MgC ₃	Mg aN CaaN	l ₂ Mg	iSi Si			■ ище	елочно	о-зем	металлами (щелочные ельные металлы, гидроксиды:	4Mg NH₄N	+ 10HNO ₃ (pa36.) => 4Mg(NO ₃) ₂ + NO ₃ + 3H ₂ O	C+	перод: · H ₂ O => CO ₂ + C => 2C					3S + 6NaC 3H ₂ O	OH => 21	Na₂S + Na	ı2SO3 +
	BaO ₂)	BeS -				Be ₃ N					Ba +	+ 2H ₂ O) => B	2NaOH + H ₂ a(OH) ₂ + H ₂	2NO ₂	4HNO ₃ (конц.) => Ca(NO ₃) ₂ + ₂ + 2H ₂ O	Fe ₃	O + C => Fe O ₄ + C => 3	FeO + CO				*галогены 2F ₂ + 2Na	OH => C		
		Al ₂ S ₁ -	1000000	2 20	Al ₄ C ₃	AIN					- пр Мg -	+ 2H ₂ C) => N	ии: //g(OH) ₂ + H ₂ ия оксидной пленки:	2H₂C	$2H_2SO_4$ (конц.) => ZnSO ₄ + SO ₂ +) миний (AI), железо (Fe), хром (Cr)	2Al₂	aO + 6C => 2 2O3 + 9C => + SiO2 => S	$AI_4C_3 + 60$				3Cl ₂ + 6Na 3H ₂ O (при Cl ₂ + 2NaO	нагрев	ании)	
	0-0	ZnS Crs Cr ₂ S ₀	ZnHal		2		+				2AI	+ 6H ₂ C) => 2	ин оксидной пленки. 2AI(OH) ₃ + 3H ₂ средней активности =>	реаги	ируют с конц.кислотами- лителями только при	3C(+ 3102 => 3 [изб.) + SiO2 дород:		2CO			H ₂ O Cl ₂ + Ca(C			
	2000	FeS	FeGi ₂ FeBr ₂				+	2.0			■ okci 3Fe	иды: + 4H ₂ (0 =>	Fe ₃ O ₄ + 4H ₂	2Fe -	евании!!! + 6H ₂ SO ₄ (конц.) => Fe ₂ (SO ₄) ₃ +	ZnC FeC) + H ₂ => H ₂) + H ₂ => Fe	+ H ₂ O				3Br ₂ + 6Na 3H ₂ O (при	аОН => I нагрев	NaBrO₃ + ании)	5NaBr+
Cu	CuO	CuS	CuCl; CuBr; CuI				\top					Fe + 6	H₂O -	тется влажный воздух, +3O ₂ => 4Fe(OH) ₃)	Плат	₂ + 6Н₂О чина (Pt) и золото (Au) не ируют	сте	слород (есл пени окисл u ₂ O + O ₂ =>	ения):	т в пр	омежу	уточном	Br ₂ + 2Na0 H ₂ O 3l ₂ + 6Na0			
[20000]			Cui		31 3		0.10	9/1			2Cr-) => (Cr ₂ O ₃ + 3H ₂	Д) Щ	ЕЛОЧИ: почами реагируют только Zn, Be	4Fe	20 + O ₂ => 2 O ₂ + O ₂ => 2	2Fe ₂ O ₃				3H ₂ O (при *фосфор:			211
	02	S H ₂	F ₂	Cl ₂	Br ₂ l ₂	1	_	C N	√ı₂ Si		мен	ее акт	ивны			щелочей	2C0	$O + O_2 => 20$ $O_3 + O_2 => P$	00 ₂ 20 ₅				2P + 3NaC 3NaH ₂ PO ₂	2	2O => 2P⊦	13 +
02	- s	O ₂ H ₂ O	OF ₂	2.50	e e	(146)	03	100 N	10 SiO ₂		2AI	+ Fe ₂ C)3 =>	1O + Cu Al ₂ O ₃ + 2Fe очно-земельные	H ₂	$2NaOH + 2H_2O \Rightarrow Na_2[Zn(OH)_4] +$ $2NaOH + 2H_2O \Rightarrow Na_2[Be(OH)_4] +$	Б) Н	O + O₂ => 21 КИСЛОТЫ:	NO ₂				*кремний: Si + 2NaO 2H ₂		=> Na ₂ Si	O ₃ +
s	SO ₂	- H ₂ S	SF ₀	SCI ₂ S ₂ CI ₂	SBr ₂	P ₂ P ₂	S ₅	O ₂	- SiS ₂		мет	аллы г	иогут	реагировать с вом и оксидом кремния	H ₂	2NaOH + 6H2O => 2Na[Al(OH)4] +	H₂S	слород: S + O ₂ (нед.) _S S + 3O ₂ (из			H ₂ O		Г) СОЛИ: *галогены	:		
Hz I	120 H	zS -	HF	HCI	HBr HI			H ₄ N	Нз -		(IV):	+ CO	2 => 2	MgO + C	3H₂ *pacr	плавы щелочей	*raл H₂S	погены: S + Hal ₂ => 2	2HHal + S	(Hal =	F, CI,		Na ₂ S + Ha F, Cl, Br, I)			(Hal =
F ₂	OF ₂ S	Fo HF				Pi	F ₆ C		F ₃ SiF ₄		B) C	БЫЧЬ	ные н	2MgO + Si КИСЛОТЫ (т.е. не конц.серная кислота):	Be+	$2KOH \Rightarrow K_2ZnO_2 + H_2$ $2KOH \Rightarrow K_2BeO_2 + H_2$ $6KOH \Rightarrow 2KAIO_2 + 2K_2O + 3H_2$	_ P, S	кислоты-оки S, C, I ₂ 6HNO ₃ (кон					2NaI + Br ₂ 2NaBr + C 2NaI + Cl ₂	l ₂ => 2N	aCl + Br ₂	
Cl2	. St	Cl ₂ HCI	*	:::		PO	Cls Cls	yea	- SiCl4			галлы	до во	одорода вытесняют	E) C	ОЛИ:	S+	2HNO ₃ (pas	б.) => H ₂ S	SO ₄ + 2	2NO	H ₂ O	*кислород Сульфидь	Į:		=>
Br ₂	- si	Br ₂ HBr	×	(00)	S 39	PE		e: s	- SiBr4	6	2AI -	+ 6HC	l => 2	Cl ₂ + H ₂ AICl ₃ + 3H ₂ eCl ₂ + H ₂	Zn +	e активный: CuSO ₄ => ZnSO ₄ + Cu оторые металлы с солями Fe ³⁺ :	3P -	5HNO ₃ (кон + 5HNO ₃ (ра	ıзб.) + 2H ₂	2O => 3	ЗН₃РО) ₄ + 5NO	оксид мет 2CuS + 3C	D ₂ => 20)2
l ₂	-	- н	*	::0	* F	P	13	* S	- Sil4		Fe +	2HCI	(конц	4.) => FeCl ₂ + H ₂ 4.) => FeCl ₂ + H ₂ 86.)=> FeSO ₄ + H ₂	Cu+	2FeCl ₃ => CuCl ₂ + 2FeCl ₂ Fe ₂ (SO ₄) ₃ => 3FeSO ₄	4H₂	+ 10HNO₃(к 2O 2H₂SO₄(коі				10NO ₂ +	Д) Гидрок*кислород4Fe(OH)₂	Į:	+ O2 => 4l	Fe(OH) ₃
Р		,S ₅ .	PFs		PBr ₃ Pl ₃	8	4	.: :					(,			C+	2H ₂ SO ₄ (ко + 5H ₂ SO ₄ (нц.) => СС	$0_2 + 28$	$5O_2 + 2$		=(=::,2			-(-1.70
С	CO (MAD C) (CO)	S ₂ CH ₄	CF4	523	8 8	154	2	20 0	- SIC		ŀ						2H ₂	:O								
N ₂	NO SiO ₂ Si	NH ₃	NF ₃ (Ocuban promin) SiF ₄	SiCl ₄ S	SiBra Sila	9	- s	iC	- 23																	
		СИФИК	<u> </u>		<u>КЛА</u> (ССИФ	_	ия ги	ДРОКСИД	1OB		<u>к</u> ла	ACCN	ФИКАЦИЯ КИСЛОТ		КОВАЛЕНТНЫЕ БИНАРНЫЕ	÷		140111	JEIC C.	NH v D.	— — —				
	<u>ОК</u> ЛАСС	СИДОВ ИФИКАІ	ВИТ	Стє	ОСНОВН епень ок	НЫЕ Г ислен	ГИДРС ния ме	КСИДІ талла -	Ы (ОСНОІ +1 и +2	ВАНИЯ)	■ K	НАЛИЧ ислор	<u>ЧИЕ А</u>	<u>АТОМОВ КИСЛОРОДА</u> одержащие кислоты:		вода	i	-	VIOHE		- II IAPI	I IDIC CUEL	KINUSTINA	Т	-	
<u>OK</u>	СИДО :НОВН	B META	<u>ЛЛОВ</u> СИДЫ	Nac	OH, LIOH	, KOł	H, Ba(0	ОН)₂и	оксиды = і т.д. цроксиды:		K	-ты, и	т.д.	₁ , H ₂ SiO ₃ , органические дные кислоты: HCl, HBr,	PBr₅	+ 4H ₂ O => H ₃ PO ₄ + 5HCl + 4H ₂ O => H ₃ PO ₄ + 5HBr + 3H ₂ O => H ₂ SiO ₃ + 4HCl	i .	7143 B	=		90					
мета	алла +	окис. 1 и +2 , К₂О, Е		Fe(OH)₂ Cu(<u>AN</u>	ОН)₂ ИФОТ	Cr(OH TEPHb)₂ и т.д IE ГИД	РОКСИДЬ		Н	II, HF, I <u>O</u>	H₂S, i CHOI	и т.д. ВНОСТЬ КИСЛОТ	PCI ₅	<u>ЩЕЛОЧЬ</u> + 8KOH ⇒ K₃PO₄ + 5KCl +		идролиз среде ге, НСІ)	CaCl₂ + NH₄Cl	+ PH ₃	+ SiH ₄	£	CaCl ₂ + C ₂ H ₂	H ₂ S	ž +	
т.д.	АМФ	ОТЕРНЬ		AI(C	епень окі ЭН)з				+3 и +4 _{2,} Pb(OH) ₂	Be(O⊔)	Н	NO ₂ , ł	HNO₃		PBr₅	+ 8KOH => K ₃ PO ₄ + 5KBr +	H	_ = z ≥	Cl ₂ +	BaCl ₂ +	NaCl +	AICI3 + CH4	aCl2 +	AICI3 + H2S	NaCI + H ₂	
	<u>О</u> онепь	ССИДЫ ОКИС			KI	1СЛС	ТНЫЕ	ГИДР	2, РБ(ОН)2 ОДКСИДЬ +5 и выше	<u> 1</u>	■ H	₂SiO₃,	H ₂ CC	ые кислоты: H₂SO₄, D₃ ые кислоты: H₃PO₄		+ 6KOH => K2SiO3 + 4KCl +	i	Продукт кисло (напри	20		2	4	ű	•		
Al ₂ O	13	3 и +4 іия: ZnC), SnO	Кис		держ	кащие	кислот	ы немета		† c	собою осфор	е вн ра:	имание на кислоты		СВОЙСТВА АММИАКА ВОДА										
РbО <u>КИ</u> (, ВеО СЛОТЬ	ные ок	сиды			олног	о зам		я «свобо		K	ислота	a	O ₂ - одноосновная основная кислота		+ H ₂ O <=> NH ₄ OH <u>KUCЛОТЫ</u> 3(иЗб.) + H ₂ SO ₄ <=> (NH ₄) ₂ SO ₄	ŀ	Продукт гидролиз в водной среде (H ₂ O)	£	H3	14	7	Į į	တ္လ	20	
мета		окисл -5 и выш Э ₇		ами	иония				тл или к		1		<u>СПО</u>	ОСОБНОСТЬ К ІССОЦИАЦИИ	NH ₃ (нед.) + H ₂ SO ₄ <=> NH ₄ HSO ₄ СОЛИ (реагирует растворм		гидр го (О	Ca(OH) ₂ + NH ₃) ₂ + PH ₃	NaOH + SiHa	AI(OH)3 + CH4	Ca(OH) ₂ + C ₂ H ₂	AI(OH)3 + H2S	NaOH + H ₂	
	<u>ЛАСС</u> ОК	ИФИКАІ СИДОВ				фсор	ры: К₂ŀ		KCI, KNO; (₃PO₄,KH₂ <u>/</u>		. Н	хЭОу	ые кы (ес	ислоты: HCl, HBr, HI, ли разность между	При	<u>аммиака)</u> условии:		дукт Одно	а(ОН	Ba(OH) ₂	NaOH	U(OH)	а(ОН)	N(OH)	NaO	
	<u>НЕМІ</u> ОЛЕС	ЕТАЛЛС ЭБРАЗУІ		ато	мов вод	полн	ого заг	иещени	 ия «свобо пл или к		■ 6		или	ислорода и водорода равно двум, то кислота	- обр	ы растворима назуется осадок н + 3NH ₃ + 3H ₂ O => Al(OH) ₃ +	i	Про				4	Ö			
KИ	СЛОТЬ	Ю, № НЫЕ ОК БРАЗУЮ		Кис					, KHSO₃ KH₂PO₄,K₂	HPO ₄	C	лабые	, УС,	поты: все остальные ТОЙЧИВОСТЬ	3NH	СІ КИСЛОРОД	:	2502				-	4			
Все нем	остал еталло	пьные о ов, кото	ксиды эые не	Сод	ержить	<u>КОМГ</u> комг	ПЛЕКС	HAR C			H	₃ PO ₄ ,	HCI, I	ie кислоты: H₂SO₄, HBr, HI вые кислоты: H₂SO₃,	ката	$_3$ + 3O ₂ <=> 2N ₂ + 6H ₂ O (без лизатора) 3 + 5O ₂ <=> 4NO + 6H ₂ O (с	:	Пример вещества	Ca ₃ N ₂	3 P 2	4Si	Метаниды АІ₄С₃	Ацетилениды СаС ₂	S ₃	NaH	
«нес	солобр	в гр азующи СО ₂ , (X»	(CM	отрим на Al(OH)4]	ı []) K₂[Zn	n(OH) ₄]				Н	₂ CO ₃	PAC	ТВОРИМОСТЬ	ката	лизатором) <u>ОКСИДЫ МЕТАЛЛОВ</u>		При	Ca	Ba ₃ P ₂	Na ₄ Si	Иета Al4	Са	Al ₂ S ₃	ž	
SO₂ Т.Д.	, UU3,	JU2, (л∠∪, И		ин катио	н ме	талла		<u>)ЛЬ</u> атион амм тков: Са((Н	₃ PO ₄ ,	рим НСІ, І	ые кислоты: H₂SO₄, HBr, HI и др.	2NH:	3 + 3CuO <=> N ₂ + 3H ₂ O + 3Cu	:					~	Ā			
				Два	а разнь	<u>ДЕ</u> ых к	ЗОЙНА атион	Я СОЛ а мет	<u>lь</u> галла и			ысшие	э жир	мые кислоты: H₂SiO₃, ные кислоты НОЩИЕ СВОЙСТВА			į.	Ne se	<u></u>	4	4		_	<u>a</u>	7	
						OC	HOBH.	АЯ СО	laAl(SO ₄) ₂ <u>ЛЬ</u> остатка,	булет	н	лабь еокис	іе к :лите	ислоты («кислоты- ли»): все остальные			i.	Бинарное соединение	Нитриды	Фосфидь	Силициды	,	Кароиды	Сульфиды	Гидриды	
					-группа((.,		исл ₂ SO ₄ (н		, кроме НNО₃ и)			:	Бин	Ŧ	ф	Сид	3	χ α	Cy	ž	i
																		0.000	i .							

ХИМИЧЕСКИЕ СВОЙСТВА ОСОБЫЕ РЕАКЦИИ ОКСИДОВ <u>АМФОТЕРНЫХ ОКСИДОВ</u> $4NO_2 + 2H_2O \Rightarrow 2HNO_2 + 2HNO_3$ $4NO_2 + 2H_2O + O_2 \Rightarrow 4HNO_3$ $4NO_2 + 2H_2O + O_2 \Rightarrow 4HNO_3$ $2NO_2 + 2NaOH \Rightarrow NaNO_2 + NaNO_3$ $+ H_2O$ A30TA KUCЛОТНЫЕ ОКСИДЫZnO + SO₃ => ZnSO₄ Al₂O₃ + SO₃ => Al₂(SO₄)₃ SO₂ и CO₂ не могут реагировать с амфотерными гидроксидами амфотерными гидроксидами

<u>ОСНОВНЫЕ ОКСИДЫ</u>

Основные оксиды, которые соответствуют щелочами. Реакция идет при сплавлении, образуется $6NO_2 + 4NH_3 => 5N_2 + 6H_2O$ $NO_2 + SO_2 => SO_3 + NO$
$$\begin{split} NO/N_2O/NO_2 + H_2 &=> N_2 + H_2O \\ NO/N_2O/NO_2 + C &=> N_2 + CO_2 \\ NO/N_2O/NO_2 + Cu &=> N_2 + CuO \end{split}$$
средняя соль: ZnO + $K_2O => K_2ZnO_2$ $Al_2O_3 + BaO => Ba(AlO_2)_2$ ОСОБЫЕ РЕАКЦИИ ОКСИДА Al₂O₃ + BaO ⇒ Ba(AlO₂)₂ <u>KVC.IOTЫ</u>

Образуется соль и вода:
Fe₂O₃ + 6HCl ⇒ 2FeCl₃ + 3H₂O

ZnO + H₂SO₄ = > ZnSO₄ + H₂O

<u>III.E.IO</u>O+IV

a) раствор щелочи - образуется OCOBЫE PEAKLIMI OKCM YFITEPOLA (III) FeO + CO ⇒ Fe + CO₂ ZnO + CO ⇒ Zn + CO₂ CO + Cl₂ ⇒ COCl₂ CO + Cl₂ ⇒ COCl₂ CO + Cl₂ + H₂O ⇒ CO₂ + 2HCl CO + NaOH ⇒ HCOONa ЖЕЛЕЗНАЯ ОКАЛИНА Fe₃O₄ + 8HBr=> 2FeBr₃ + Fe комплексная соль комплексная соль: $2NaOH + ZnO + H_2O \Rightarrow Na_2[Zn(OH)_4]$ $2NaOH + Al_2O_3 + 3H_2O \Rightarrow 2Na[Al(OH)_4]$ 6) расплав щелочи - образуется Fe₃O₄ + 8HCl => 2FeCl₃ + FeCl₂ + 4H₂O 4П2O 2Fe₃O₄ + 10H₂SO₄(конц.) => ■ средняя соль: 2NaOH + Al₂O₃ => 2NaAlO₂ + H₂O $3Fe_2(SO_4)_3 + SO_2 + 10H_2O$ $Fe_3O_4 + 10HNO_3(\kappa OHU.) =>$ $3Fe(NO_3)_3 + NO_2 + 5H_2O$ $8HI + Fe_3O_4 => 3Fel_2 + l_2 + 4H_2O$ 2NaOH + ZnO => Na2ZnO2 + H2O <u>СОЛИ</u> При сплавлении с карбонатами и три сплавлении с кароонатам сульфитами: Al₂O₃ + Na₂CO₃ => 2NaAlO₂ + CO₂ ZnO + Na₂SO₃ => Na₂ZnO₂ + SO₂ <u>ВОССТАНОВИТЕЛИ</u> ПЕРОКСИДЫ - 2Na => 2Na₂O BaO₂ + Ba => 2BaO 2Na₂O₂ + 2CO₂ => O₂ + 2Na₂CO₃ $\frac{BOCCTAHOBNTEJIN}{ZnO + H_2 \Rightarrow Zn + H_2O}$ $ZnO + C \Rightarrow Zn + CO$ $ZnO + CO \Rightarrow Zn + CO_2$ $3ZnO + 2NH_3 \Rightarrow 3Zn + N_2 + 3H_2O$ $Na_2O_2 + CO \Rightarrow Na_2CO_3$ $2H_2O_2 \Rightarrow O_2 + 2H_2O$ $Na_2O_2 + H_2O$ (rop.) => $2NaOH + O_2$ $Na_2O_2 + 2H_2O$ (xon.) => $2NaOH + O_2$ 2Na₂O₂ + 4HCl (rop.) => 4NaCl + O₂ + $Na_2O_2 + 2HCI (хол.) => 2NaCI + H_2O_2$ ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ГИДРОКСИДОВ кислоты

С водой реагируют только те основные оксиды которые образуют щелочь: $H_2O+K_2O=x_2KOH$ Ba $O+K_2O=x_2KOH$ При нагревании реагирует MgO: MgO + $H_2O \Rightarrow Mg(OH)_2$ KUCJOTH БОСИДЫ $SO_2 + K_2O \Rightarrow K_2SO_3$ 2Cu₂O + O₂ => 4CuO 4FeO + O₂ => 2Fe₂O₃ 8 8FeO + H₂ => Fe + H₂O FeO + H₂ ⇒> Fe + H₂O FeO + C ⇒> Fe + CO CuO + CO ⇒> Cu + CO₂ 3CuO + 2NH₃ ⇒> 3Cu + N₂ + 3H₂O C 5ODEEE AKTUBHЫМИ МЕТАЛЛАМИ 2AI + 3FeO ⇒> AL2O₃ + 3Fe CuO + Zn => ZnO + Cu

 $SO_2 + K_2O \Rightarrow K_2SO_3$ $SO_3 + FeO \Rightarrow FeSO_4$ $SO_4 + FeO \Rightarrow FeSO_4 + FeO \Rightarrow FeSO_4$ $SO_4 + FeO \Rightarrow FeSO_4 + FeO \Rightarrow FeO$ ГВО + ПКВО, (разб.) ⇒ ZnSO₄ + H₂O Кислоты-окислители: конц.серная кислота и азотная: если металл в промежуточной с.о., то образуется продукт восстановления серы или азота. Если в максимальной с.о., то просто соль и вода $CuO + H_2SO_4$ (конц.) => $CuSO_4 + H_2O$ $Cu_2O + 3H_2SO_4$ (KOH_4 .) => $2CuSO_4 + SO_2 + 3H_2O$ $Cu_2O + 6HNO_3$ (KOH_4 .) => $2Cu(NO_3)_2 + 2NO_2 + 3H_2O$

вода

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ

Реагируют все, кроме SiO_2 $H_2O + SO_3 \Rightarrow H_2SO_4$ $CrO_3 + H_2O \Rightarrow 2H_2CrO_4$ $SiO_4 + SiO_5 \Rightarrow 2H_2O \Rightarrow 2HO_2 + 2HO_3$ OCHOBHЫЕ И АМФОТЕРНЫЕ ОКСИДЫОСПОВПЫЕ И АМФОТЕРПЫЕ ОКСИДЫ
Тоже правило, что было в основных и амфотерных оксидах: SO₂ + K₂O => K₂SO₃ Al₂O₃ + SO₃ => Al₂(SO₄)₃

С кислотами реагируют только 3 оксида Оксид кремния (IV): $SiO_2 + 4HF$ (нед.) => $SiF_4 + 2H_2O$ $SiO_2 + 6HF$ (изб.) => $H_2[SiF_6] + 2H_2O$ SIO2 + 6HF (vi30.) \Rightarrow H₂SIF₆] + 2H₂O OKCUA CEPD (IV): SO₂ + 2H₂S \Rightarrow 3S + 2H₂O SO₂ + 2HNO₃ (KOHL) \Rightarrow H₂SO₄ + 2NO₂ 3SO₂ + 2HNO₃ (pa36.) + 2H₂O \Rightarrow 3H₂SO₄ + 2NO OKCUA ФОФФОРО (III): P₂O₃ + 4HNO₃(KOHL) + H₂O \Rightarrow 2H₃PO₄ + 4NO₂ Р₂О₃ + 4HNO₃(конц.) + Н₂О ⇒ 2H₃PO₄ + 4NO₂ 3P₂O₃ + 4HNO₃(раз6), + 7H₂O ⇒ 6H₃PO₄ + 4NO Р₂O₃ + 2H₂SO₄(конц.) + H₂O ⇒ 2H₃PO₄ + 2SO₂ ОСНОВНЫЕ И АМФОТЕРНЫЕ ГИДРОКСИДЫ Щелочи (растворимые основные гидроксиды) реагируют со всем кислотными оксидами (в том числе с оксидом креиния (IV). СО2 и SO2 плохо реагируют с малоактивными основными гидроксидами и амфотерными гидроксидами. ZKOH (изб.) + SO₃ => K₂SO₄+ 2H₂O KOH (нед.) + SO₃ => KHSO₄ 2KOH + SiO₂ => K₂SiO₃+ 2H₂O Zn(OH)₂ + SO₃ => ZnSO₄ + H₂O

СО2: с карбонатами, фенолятами $CaCO_3 + CO_2 + H_2O \Rightarrow Ca(HCO_3)_2$ $K_2CO_3 + CO_2 + H_2O \Rightarrow 2KHCO_3$

C₆H₅ONa + CO₂ + H₂O => NaHCO₃ + C₆H₅OH SiO_2 : С сульфитами и карбонатами при сплавле SiO_2 : К $_2SO_3$ => SO_2 + K_2SiO_3 => SO_2 + K_2SiO_3 => SO_2 + SO_3 => SO_2 + SO_3 => SO_3 + SO_3 + SO_3 => SO_3 + SO_3 + SO

Щелочи (растворимые основания) ре со всеми кислотами: 2КОН (изб.) + H_2 SO₄ = X_2 SO₄ + $2H_2$ O КОН (нед.) + H_2 SO₃ => X_1 HSO₄ + H_2 O 2NaOH + H_2 SIO₃ => X_1 HSO₄ + H_2 O Нерастворимые основания реагируют со Перастворимыми кислотами: Бесом растворимыми кислотами: $Fe(OH)_2 + H_2SO_4 \Rightarrow FeSO_4 + 2H_2O$ При недостатке кислоты гидроксиды общей формулой $Me(OH)_2$ можно получить основные соли: $Fe(OH)_2 + HCI \Rightarrow Fe(OH)CI + H_2O$

Ba(OH)₂ + HCl => Ba(OH)Cl + H₂O *с нераствормирыми гидроксидами металлов "с нераствормирыми гидроксидами металлов общей формулой Ме(ОН)₂ с углекислыми газом образуется основная соль: 2Cu(OH)₂+CO₂ ⇒ (CuOH)₂CO₃+H₂O AMMOOTEPHЫЕ ОКСИДЫ И ГИДРОКСИДЫ С амфотерными оксидами и гидроксидами С амфотерными оксидами и гидроксидами реагируют только щелочи: а) раствор шелочи - образуется комплексная

Реакция идет если:
- Гидроксид металла и соль являются растворимыми Выпадает осадок или образуется газ 2NaOH + Cu(NO₃)₂ => 2NaOH + Cu(NO₃)₂ => Cu(OH)₂ + 2NaNO₃ 3KOH + FeCl₃ => Fe(OH)₃ + 3KCl KOH + NH₄Cl => NH₃ + H₂O + KCI <u>РАЗЛОЖЕНИЕ</u> ОСНОВНЫХ ОСНОВНЫХ ГИДРОКСИДОВ ГИДРОКСИДЫ ЩЕЛОЧНЫХ МЕТАЛЛОВ УСТОЙЧИВЫ, КРОМЕ ГИДРОКСИД ЛИТИЯ: $2LiOH \Rightarrow Li_2O + H_2O$

Все нерастворимые гидроксиды (в том числе гидроксид кальция) разлагаются с образование оксида и воды при нагревании: $Fe(OH)_2 \Rightarrow FeO + H_2O$ $Ca(OH)_2 \Rightarrow CaO + H_2O$ $Cu(OH)_2 \Rightarrow CuO + H_2O$ $Cu(OH)_2 \Rightarrow CuO + H_2O$ Саморазлагаются гидроксиды: $2AgOH \Rightarrow Ag_2O + H_2O$ $2CuOH \Rightarrow Cu_2O + H_2O$ $NH_4OH \Rightarrow NH_3 + H_2O$

КИСЛОТЫ

Амфотерные гидроксиды с растворимыми кислотами:

7л(ОН)₂ + 2HCl ⇒ ZnCl + H₂O

Zn(OH)₂ + H₂SO₄ ⇒ ZnSO₄ + H₂O ■Амфотерные гидроксиды общей Амфотерные гидроксиды общеи формулой Me(OH)» не реагируют с H.s, H₂SO₃, H₂CO₃

<u>КИСЛОТНЫЕ ОКСИЛЫ</u>

Амфотерные гидроксиды реагируют с кислотными оксидами, которые соответствуют устойчивым кислотами, с образованием средних

АМФОТЕРНЫХ ГИДРОКСИДОВ

Амфотерные гидроксиды общей формулой Ме(ОН)₃ не реагируют с SO₂, CO₂

<u>OCHOBHIE OKCИДЫ И</u>

Zn(OH)₂ + SO₃ => ZnSO₄ + H₂O

б) расплав шелочи - образуется средняя соль: ■ NaOH + Al(OH)₂ => NaAlO₂ + 2H₂O NaOH + AI(OH)₃ => NaAlO₂ + 2H₂O 2NaOH + Zn(OH)₂ => Na₂ZnO₂ + 2H₂O в) основные оксиды - сплавлени образуется срединя соль: ВаО + Zn(OH)₂ => BaZnO₂ + H₂O PAЗЛОЖЕНИЕ АМФОТЕРНЫХ ГИДРОКСИДОВ

ГИДРОКСИДОВ
Все амфотерные гидроксиды
разлагаются с образование оксида и
воды при нагревании:
Zn(OH)₃ => ZnO + H₂O
2AI(OH)₃ => Al₂O₃ + 3H₂O

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТ МЕТАЛЛЫ

Кислоты-неокислители (все, кроме азотной кислоты и конц.серной) реагируют с металлами до водорода: Mg + H₂SO₄(pa36) => MgSO₄ + H₂

Fe + H₂SO₄(pa₃6.) => FeSO₄ + H₂

Fe + HsSO₄(разь), ⇒ FeSO₄ + H₂
Fe + 2HCl ⇒ FeCl₂ + H₂
*свойства азотной и конц.серной кислоты будут отдельно рассмотрены ОСНОВНЫЕ И АМФОТЕРНЫЕ ОКСИЛЫ/ГИДРОКСИЛЫ Кислоты реагируют с основными и амфотерными оксидами с образование соли и воды. Кремниевая кислота с малоактивными оксидами не вступает малоактивывыми окоидамия не вступа в реакцию: $ZnO + H_2SO_4(pa36.) => ZnSO_4 + H_2O$ $FeO + H_2SO_4(pa36.) => FeSO_4 + H_2O$ $Fe(OH)_2 + 2HCI => FeCl_2 + 2H_2O$

солями

Zn(OH)2 + 2HCl => ZnCl2 + 2H2O

Реакция идет если образуется:
- Образуется кислота слабее, чем та, которая вступает в реакцию
- Образуется осадок СорказуетСН ГаЗ HCOONa + HCI ⇒ NaCI + HCOOH Ba(NO₃)₂ + H₂SO₄ ⇒ BaSO₄ + 2HNO₃ 2CH₃COOH + Na₂SO₃ ⇒ 2CH₃COONa SO₂ + H₂O Образуется газ $SO_2 + H_2O$ РАЗЛОЖЕНИЕ КИСЛОТ Самопроизвольное разлож $H_2CO_3 \Rightarrow CO_2 + H_2O$ $H_2SO_3 \Rightarrow SO_2 + H_2O$

Кремниевая кислота при нагревании: $H_2SiO_3 \Rightarrow SiO_2 + H_2O$ Азотная кислота: $4HNO_3 \Rightarrow > 4NO_2 + 2H_2O + O_2$ $4HNO_3 \Rightarrow > 4NO_2 + 2H_2O + O_3$ $4HNO_2 \Rightarrow > NO_2 + H_2O + NO_3$ $4HNO_2 \Rightarrow > HNO_3 + H_2O + 2NO_3$ (нагрев)

ХИМИЧЕСКИЕ СВОЙСТВА СРЕДНИХ СОЛЕЙ $\frac{\text{МЕТАЛЛЫ}}{\text{«Более активный металлы вытесняет менее активный металл в соли»}}$ Fe + CuSO₄ => FeSO₄ + Cu (железо

активнее меди) $Cu + 2AgNO_3 => Cu(NO_3)_2 + 2Ag$

СО + 2AgNCJ₃ ⇒ CU(NU₃)₂+ 2Ag IC ами щелочные и щелочно-земельные металлы не реагируют с растворами солей, так как они первее реагируют с водой Некоторые «особенные» реакции: 2FeCl₃ + 2Cu ⇒ 2FeCl₂ + CuCl₂ ГИДРОКСИДЫ МЕТАЛЛОВ Реакция идет если:
- Гидроксид металла и соль являются растворимыми
- Выпадает осадок или образуется газ 2NaOH + Cu(NO₃)₂ => Cu(OH)₂ + 2NaNO₃ 3KOH + FeCl₃ => Fe(OH)₃ + 3KCI KOH + NH₄Cl => NH₃ + H₂O + KCl Реакция идет если:
- Образуется осадок или слабая кислота - Слабая кислота: H₂S, H₂CO₃, H₂SO₃, HF, HNO₂, H₂SiO₃ и органические кислоты

Осалки, которые не растворяются - Ссадки, которые не растворяются в кислотах: BaSO₄, AgCl, AgI, AgBr, CuS, Ag₂S, HgS, PbS, CaF₂ HCl + CH₃COONa=> CH₃COOH + NaCl <u>СОЛИ</u> Реакция идет если: Обе соли растворимы

- Выпадает осадок или образуется газ $CuCl_2 + 2AgNO_3 => Cu(NO_3)_2 + 2AgCl$ $NH_4Cl + KNO_2 => N_2 + H_2O + KCl$ (при нагревании)

КИСЛЫХ СОЛЕЙ ОДНОИМЕННАЯ ЩЕЛОЧЬ

химические свойства

Ca(OH)₂ (нед.) + 2KHCO₃ => K₂CO₃ +

То есть катион металла в соли такой же, как и в щелочи $NaOH + NaHCO_3 \Rightarrow Na_2CO_3 + H_2O$ $NaH_2PO_4 + 2NaOH \Rightarrow Na_3PO_4 + 2H_2O$ $NaH_2PO_4 + 2NaOH \Rightarrow Na_3PO_4 + 2H_2O$ $NaH_2PO_4 + 2NaOH \Rightarrow Na_3PO_4 + 2H_2O$ $NaH_2PO_4 + 2NaOH \Rightarrow Na_3PO_4 + 2H_2O$ водорода, который может быть замещен, то может образоваться лругая кислая соль (чаше всего это друган кислан соль (чаще всего это ортофосфорная кислота) NaH₂PO₄ + NaOH => Na₂HPO₄ + H₂O <u>ДРУГАЯ ЩЕЛОЧЬ</u> 2NaOH + 2KHCO₃ => K₂CO₃ + Na₂CO₃

 $CaCO_3 + 2H_2O$ $Ca(OH)_2 (usi6) + 2KHCO_3 \Rightarrow KOH +$ $Ca(OH)_2 (usi6) + 2KHCO_3 \Rightarrow KOH +$ $CaCO_3 + 2H_2O$ $CaCO_3 +$ 4NaOH + Ba₃(PO₄)₂ + 2H₂O

CaCO₃ + 2H₂O

4NaOH + $Bas(PO_4)_2$ + $2H_2O$ <u>КИСЛОТЫ</u> ЕСЛИ КИСЛАЯ СОЛЬ ОБРАЗОВАНА СЛАВИ КИСЛОТОЙ: НСІ + NaHCO3 \Longrightarrow NaCl + H_2O + CO_2 ГИДРОСУЛЬФАТ Гидросульфат может реагировати

Mg + 2NaHSO₄ => MgSO₄ + Na₂SO₄ + ХИМИЧЕСКИЕ СВОЙСТВА

ОСНОВНЫХ СОЛЕЙ кислоты

кислотами (CuOH)₂CO₃ + 4HCl => 2CuCl₂ + 3H₂O + CO_2 $Cu(OH)CI + HCI \Rightarrow CuCl_2 + H_2O$

 $2NaOH + 7nO + H_2O => Na_2[7n(OH)_4]$

2NaOH + 2ЛО + H₂O ⇒ Na₂(ZП(ОП)₄) 6) расплав щелочи - образуется с соль: 2NaOH + Al₂O₃ ⇒ 2NaAlO₂ + H₂O

 $2NaOH + Al_2O_3 => 2NaAlO_2 + H_2O_2$ $2NaOH + ZnO => Na_2ZnO_2 + H_2O_3$

 $Cu + 4HNO_3(\kappa o \mu_L) \Rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$ $3Cu + 8HNO_3(pa36,) \Rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$ $4Ca + 10HNO_3(o^4, pa36.) \Rightarrow 4Ca(NO_3)_2 + NH_4NO_3 + 3H_2O$ $Ag + 2HNO_3$ (конц.) => $AgNO_3 + NO_2 + H_2O$ Алюминий, железо, хром реагируют только при

ОСОБЕННОСТИ АЗОТНОЙ КИСЛОТЫ

МЕТАЛЛЫ

Напревании

HEMETAJЛЫ

\$ + 61HNO₃(конц.) ⇒ H₂SO₄ + 6NO₂ + 2H₂O

\$ + 2HNO₅(разб.) ⇒ H₅SO₄ + 2NO

\$ + 2HNO₅(конц.) ⇒ Co₂ + 4NO₂ + 2H₂O

\$ + 51HNO₅(конц.) ⇒ Co₂ + 4NO₂ + H₂O

\$ + 51HNO₅(конц.) ⇒ H₅PO₄ + 5NO₂ + H₂O

\$ + 51HO₃(конц.) ⇒ H₅PO₄ + 5NO₂ + H₂O

\$ + 51HO₃(конц.) ⇒ 2HIO₃ + 10NO₂ + 4H₂O

CHORBHIS COKCURIS

ОСНОВНЫЕ ОКСИДЫ ОСНОВНЫЕ ОКСИЛЫ
Реакция идет с изменением степени окисления, если металл в оксиде находится в промежуточной степени окисления: $FeO + 4HNO_3(κонц,) = Fe(NO_3)_3 + NO_2 + 2H_2O$ $3FeO + 10HNO_3(κонц,) = 3Fe(NO_3)_3 + NO_2 + 5H_2O$ $4KCONTLINE (OKCANT)_1 = OKCANTLINE (OKCANTLINE (O$

Гедоц. + 10HINO3(к0HL) => 3+e(NU3)3+ NU2+ 5H20 W(СЛОТНЫЕ ОКСИДЫ Р2О3+4HNO3(к0HL) + H2O => 2H3PO4+4NO2 3P₂O₃+4HNO3(раз6), + 7H₂O => 6H3PO4+4NO SO2+2HNO3(раз6), + 2H2O => 3H₂SO₄+2NO 3SO2+2HNO3(конц.) => H₂SO₄+2NO₂ 3SO2+2HNO3(конц.) => 3H₂SO₄+2NO P2O5+2HNO3(конц.) => 2HPO3+N₂O₅ CHOBHЫЕ ГИЛРОКСИДЫ ОСНОВНЫЕ ИМЕСКИЙА Реакция идет с изменением степени окисления, если металл в гидроксиде находится в промежуточной степени окисления: 3Fe(OH)₂ + 10HNO₃(разб.) ⇒ 3Fe(NO₃)₃ + NO + 8H₂O

 $\frac{\text{СОЛИ}}{\text{Fel}_2 + 4\text{HNO}_3(\text{разб.})} = \text{Fe}(\text{NO}_3)_3 + \text{I}_2 + \text{NO} + 2\text{H}_2\text{O}$ 2Cul + 8HNO₃(конц.) => 2Cu(NO₃)₂ + I₂ + 4NO₂ + FeS + 12HNO₃(конц.) => Fe(NO₃)₃ + H₂SO₄ + 9NO₂ + <u>ДРУГИЕ РЕАКЦИИ</u> $PH_3 + 8HNO_3(конц.) \Rightarrow H_3PO_4 + 8NO_2 + 4H_2O$

ОСОБЕННОСТИ КОНЦЕНТРИРОВАННОЙ СЕРНОЙ КИСЛОТЫ

■ солей:

<u>МЕТАЛЛЫ</u> -4Mg + $5H_2$ SO₄(конц.) => 4MgSO₄ + H_2 S + 4H₂O Cu + 2H₅SO₄(конц.) => CuSO₄ + SO₂ + 2H₂O Алюминий, железо, хром реагируют только при нагревании <u>НЕМЕТАЛЛЫ</u>

HEME (AUJUB) S + 2H₂SO₄(конц.) => 3SO₂ + 2H₂O C + 2H₂SO₄(конц.) => CO₂ + 2SO₂ + 2H₂O 2P + 5H₂SO₄(конц.) => 2H₃PO₄ + 5SO₂ + 2H₂O

КИСЛОТНЫЕ ОКСИДЫ
P2O3 + 2H2SO4(КОНЦ.) + H2O => 2H3PO4 + 2SO2
OCHOBHЫЕ ГИДРОКСИДЫ

Реакция идет с изменением степени окисления, если металл в гидроксиде находится в промежуточной степени окисления: $2Fe(OH)_2 + 4H_2SO_4(конц.) \Rightarrow Fe_2(SO_4)_3 + SO_2 +$ $\frac{\text{СОЛИ}}{\text{Твердые галогениды с конц.серной кислотой:}}$ $\text{КСI(тв.)} + \text{H}_{2}\text{SO}_{4}(\text{конц.)} \Rightarrow \text{KHSO}_{4} + \text{HCI (можно)}$

написать K_2SO_4) 2KBr(тв.) + 2H₂SO₄(конц.) => K_2SO_4 + Br₂ + SO₂ + 8KI(тв.) + 5H₂SO₄(конц.) => 4K₂SO₄ + 4I₂ + H₂S +4H₂O 4112O Другие соли: 2CuI + 4H₂SO₄(конц.) => 2CuSO₄ + I₂ + 2SO₂ + 4H₂O $2Fel_2 + 6H_2SO_4$ (конц.) => $Fe_2(SO_4)_3 + 2I_2 + 3SO_2 +$ 2FeS + 10H₂SO₄(конц.) => Fe₂(SO₄)₃ + 9SO₂ +

ОСОБЕННОСТИ ХИМИЧЕСКИХ СВОЙСТВ БЕСКИСЛОРОДНЫХ КИСЛОТ $\frac{\Gamma A N O \Gamma E H O B O D O P O D D D}{4 H C I + M n O_2 \Rightarrow M n C I_2 + C I_2 + 2 H_2 O} \\ 4 H B r + M n O_2 \Rightarrow M n B r_2 + B r_2 + 2 H_2 O} \\ 16 H C I + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 5 C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 2 K C I_4 + 2 K M n O_4 \Rightarrow 2 M n C I_2 + 2 K C I_4 + 2 K C I_$ 16HBr + 2KMnO4 => 2MnBr2 + 5Br2 + 2KBr + 8H₂O 8H₂O 14HI + K₂Cr₂O₇ \Rightarrow 2KI + 2Crl₃ + 3l₂ + 7H₂O 14HI + K₂Cr₂O₇ \Rightarrow 2KI + 2Crl₃ + 3l₂ + 7H₂O 2HI + 2FeCl₃ \Rightarrow 2FeCl₂ + 2HCI + l₂ 6HI + Fe₂O₃ \Rightarrow 2Fel₂ + l₂ + 3H₂O 8HI + Fe₃O₄ \Rightarrow 3Fel₂ + l₂ + 4H₃O HI + 6HNO₃ \Rightarrow HIO₃ + 6NO₂ + 3H₂O

4HCl (rop.) + 2Na₂O₂ => 4NaCl + O₂ + 2H₂O 2HCl (xon.) + Na₂O₂ => 2NaCl + H₂O₂ <u>CEPOBOДОРОД</u>
2H₂S + SO₂ => 3S + 2H₂O

H₂S + 8HNO₃ => H₂SO₄ + 8NO₂ + 4H₂O

H₂S + 2FeCl₃ => 2FeCl₂ + S + 2HCl

> ХИМИЧЕСКИЕ СВОЙСТВА КОМПЛЕКСНЫХ СОЛЕЙ СИЛЬНЫЕ КИСЛОТЫ

 $K[AI(OH)_4] + 4HcI (M36.) \Rightarrow AICI_3 + KCI + 4H_2O$ $K[AI(OH)_4] + HCI (M96.) \Rightarrow AI(OH)_3 + KCI + H_2O$ $K_2[Zn(OH)_4] + HCI (M96.) \Rightarrow ZnCI_2 + 2KCI + 4H_2O$ $K_2[Zn(OH)_4] + 2HCI (M96.) \Rightarrow Zn(OH)_2 + 2KCI + 4H_2O$

 $\begin{array}{l} 2H_2O \\ \hline CJABЫE~KUCJOTЫ\\ K[AI(OH)_4] + CO_2 => AI(OH)_3 + KHCO_3\\ K_2[Zn(OH)_4] + 2CO_2 => Zn(OH)_2 + 2KHCO_3\\ K[AI(OH)_4] + SO_2 => AI(OH)_3 + KHSO_3\\ K[AI(OH)_4] + H_2S => AI(OH)_3 + KHS + H_2O\\ K_2[Zn(OH)_4] + 3H_2S => ZnS + 2KHS + 4H_2O\\ \hline PASJOWEHJE\\ K[AI(OH)_4] => KAIO_2 + 2H_2O\\ K_2[Zn(OH)_4] => KAIO_2 + 2H_2O\\ K_2[Zn(OH)_4] => K_2ZnO_2 + 2H_2O\\ \end{array}$

	Al3+	Fe3+	Cr3+	Cu2+
CO32-	Al(OH)3 + CO2	Fe(OH) ₃ + CO ₂	Cr(OH)3 + CO2	(CuOH)2CO2 + CO2
HCO3-	AI(OH)3 + CO2	Fe(OH) ₃ + CO ₂	Cr(OH)3 + CO2	(CuOH)2CO3 + CO2
5032-	Al(OH)3 + 5O2	*Fe2+ + 5042-	Cr(OH)3 + 5O2	
H5O3-	Al(OH)3 + 5O2	*Fe2+ + 5042-	Cr(OH)3 + 5O2	Нет на ЕГЭ
52-	AI(OH)3 + H25	*Fe2+ 5	Cr(OH)3 + H25	Cu5
HS-	AI(OH)3 + H2S	*Fe2+ + 5	Cr(OH)3 + H25	CuS
I-	-	FeIz + Iz	190	CuI + Iz

Тиримеры с алюминием. 2AlCl₃ + 3R₂CO₃ + 3H₂O => 2Al(OH)₃ + 6KCl + 3CO₂ 2AlCl₃ + 3K₂SO₃ + 3H₂O => 2Al(OH)₃ + 6KCl + 3SO₂ 2AlCl₃ + 3K₂S + 6H₂O => 2Al(OH)₃ + 3H₂S + 6KCl ZANUS + 3ASS + 6H2O => ZANUSHIS + 3AF2S + 6NOI PIDMMEDIA C XDOMOM: $2CrCl_3 + 3K_2OO_3 + 3H_2O => 2Cr(OH)_3 + 6KCl + 3CO_2$ $2CrCl_3 + 3K_2SO_3 + 3H_2O => 2Cr(OH)_3 + 3KCS + 6H2O => 2Cr(OH)_3 + 3H_2S + 6KCl$ Примеры с железом: 2FeCl₃ + 3K₂CO₃ + 3H₂O => 2Fe(OH)₃ + 6KCl + 3CO₂ $2 \text{FeCl}_3 + 3 \text{K}_2 \text{Od}_3 + 3 \text{FigO}_3 \Rightarrow 2 \text{Fe(Origin}_3 + \text{KKOI}_4 + 3 \text{K}_2 \text{SO}_3 + \text{H}_2 \text{O}_3 \Rightarrow 2 \text{Fe(Origin}_3 + \text{KCI}_4 + \text{K}_2 \text{SO}_4 + 3 \text{K}_2 \text{S}_3 \Rightarrow 2 \text{FeS}_4 + 8 \text{KCI}_4 + 3 \text{K}_2 \text{S}_3 \Rightarrow 2 \text{FeCl}_2 + 8 + 2 \text{HCI}_3 + \text{H}_2 \text{S}_3 \Rightarrow 2 \text{FeCl}_2 + 8 + 2 \text{HCI}_4$ СУРОВЫЕ СУЛЬФИДЫ Суровые сульфиды: Cu3, HgS, Ag2S, PbS Образование: Cu5, HgS, Ag2S, PbS Сu5O4 + Hs \Rightarrow CuS + H2SO4 CuSO4 + Hs \Rightarrow CuS + K₂SO4 Реагируют только с концентрированной азотной кислотой!!! CuS + 8HNO3(конц.) \Rightarrow CuSO4 + 8NO2 + 4H₂O CuS + 10HNO3(конц.) \Rightarrow Cu(NO3)2 + H₂SO4 + 8NO2 + 4H₂O

co	угарный газ
CO ₂	углекислый газ
CO _{2(vs.)}	сухой лед
SO ₂	сернистый газ
NO ₂	бурый газ
N ₂ O	веселящий газ
SiO ₂	кремнезем/кварц/песок
CaO	негашеная известь
Fe ₃ O ₄	железная окалина
Al ₂ O ₃	корунд

CuSO ₄ * 5H ₂ O	медный купорос
FeSO ₄ * 7H ₂ O	железный купорос
Na ₂ CO ₃ * 12H ₂ O	кристаллическая сода
CaSO ₄ * nH ₂ O	гипс

	елитры
NaNO ₃	натриевая селитра
KNO ₃	калиевая селитра
NH ₄ NO ₃	аммиачная селитра

	Соли
KCIO ₃	бертолетова соль
NaCi	поваренная соль
FeCl ₃	хлорное железо
NaHCO ₃	пищевая (питьевая) сода
Na ₂ CO ₃	кальцинированная сода
K ₂ CO ₃	поташ
CaCO ₃	мел/мрамор/известняк
Na ₃ [AIF ₆]	криолит
Ca ₃ (PO ₄) ₂	фосфорит/апатит
Ca(H ₂ PO ₄) ₂	двойной суперфосфат
(CuOH) ₂ CO ₃	Малахит
FeS2	пирит/серный колчедан

		Соли
_	KCIO ₃	бертолетова соль
	NaCi	поваренная соль
ель	FeCl ₃	хлорное железо
_	NaHCO ₃	пищевая (питьевая) сода
	Na ₂ CO ₃	кальцинированная сода
	K ₂ CO ₃	поташ
укт	CaCO ₃	мел/мрамор/известняк
	Na ₃ [AIF ₆]	криолит
_	Ca ₃ (PO ₄) ₂	фосфорит/апатит
Усл	Ca(H ₂ PO ₄) ₂	двойной суперфосфат
	(CnOH)2CO3	Малахит
	FeS ₂	пирит/серный колчедан

Окислитель	Продукт восстановления	Условия	Примечания
H ₂ SO ₄	so ₂	Малоактивные металлы (Сu, Ag). А также Al, Cr, Fe только при нагревании. Из неметаллов: S, C	Серная кислота будет окислителем только в
	S	Металлы средней активности	концентрир- ованном состояния
	H ₂ S	Щелочные и щелочноземельные металлы	
F ₂	F- (нет цвета)	•	(*)
Cl ₂	СІ"(нет цвета)	*	143
Br ₂	Вг"(нет цвета)	2	-
12	І⁻(нет цвета)	*	
Оксокислоты хлора, брома и их соли	Cl Br	*	Если идет реакция сопропорциониров ания в кислой среде с галогенид- ионами, то образуется Cl ₂ , Br ₂
	Fe ³⁺	Кислая среда	
Ферраты FeO4	Fe(OH) ₃	Нейтральная и щелочная среда	
Oz	ЭхО _у (Э – химический элемент). Цвет оксиды зависит от химического элемента	Реакция горения/мягкое окисление	Натрия горит с образование пероксида. Калий, цезий, рубидий образует надпероксиды
	H ₂ O + O ₂	Кислая среда	USA
03	OH- + O ₂	Нейтральная среда	
	02-+02	*	С сильными восстановителями

	Манганат МпО	Сильнощелочная среда	
Пермянганят МпО₄	MnO ₂	Нейтральная или слабощелочная среда	
	Mn ²⁺	Кислая среда	
Манганат MnO ₄ -	MnO ₂	Нейтральная или слабощелочная среда	
	Mn ²⁺	Кислая среда	
MnO ₂	Mn ²⁺		-
	Cr(OH)	Нейтральная среда	В кислой среде
Хромят CrO ₄ -	[Cr(OH) ₆] ³⁻	Щелочная среда	хромат переходит дих _г юмат
Дихромат Сг ₂ О ²⁻	Cr3+	Кислая среда	В щелочной среде
	Cr(OH) ₂	Нейгральная среда	дихроматы переходят в хроматы
Fe ³⁺	Fe ²⁺	Нейтральная или	Сильные
Cu ²⁺	Cu+	кислая среда	восстиновители (например, иодиды)
Cu(OH) ₂	Cu ₂ 0	Восстановление альдегидов	Является качественной реакцией
Нитраты NO ₃	NH ₃	С сильными восстановителями	Разложение нитратов и нитритов смотреть внизу
	Нитриты NO ₂	В расплавах	Чаще в щелочной среде
Азотистая кнелота/нитриты HNO ₂ /NO ₂	N ₂	При нагревании	С солями аммония
	NO	-	
NO ₂ (сильный окислитель, бурый газ, «лисий хвост»)	NO, N ₂ , NH ₃		Продукты восстановления зависят от силы восстановителя
SO ₂	s		-

	восстановления		
H ₂ O ₂ (перекись водорода)	OH-	Нейтральная и щелочная среда	
	H ₂ O	Кислая среда	
HNO ₃	NO ₂	Кислота очень концентрированная (от 80%), металлы все, кроме Аu, Pt, Ir. Неметаллы: C, S, P Малоцктивные металлы и концентрация кислоты 45-75%	Для реакции с Fe, Al, Cr нужно нагревание. Без нагревание происходит пассивация
	NO	Металлы средней активности (от Мл до Рb) в кислота концентрированная (45-75%) Металлы акпложеннае и кислота разбавленная (10-40%) Неметаллы: С, S, P. И разбавленная кислота разбавленная кислота разбавленная кислота разба	
	N ₂ O	Металлы активные (от Li до Al) и концентрация кислоты от 45-75% Металлы средней активности и разбавленная кислота (10-40%)	(2)
	N ₂	Металлы активные (от Li до Al) и кислота разбавленная (10-40%) Металлы средней активности и кислота очень разбавленная (меньше 5%)	-
	NH ₄ NO ₃	Металлы активные и кислота очень разбавленная (меньше 5%)	121

Соли к-ты Основность к-ты

Название к-ты

Формула к-ты

H₃PO₂ H₃PO₃ H3PO4 HPO3

Фосфорноватистая Гипофосфит

Двухосновная Одноосновная

Трехосновная Одноосновная HCIO₄ HClO₃ HCIO₂ HCIO

Фосфат Фосфит

Ортофосфорная Фосфорная

Фосфористая

Метафосфорная Метафосфат

Формула кислоты Название кислоты

Степень окисления

Название соли

HCI

Хлороводородная кислота (соляная кислота)

хлорИД

ХлорНОВАТистая кислота

ПИПОхлорИТ

ХлорнОВАТая кислога Хлористая кислота

Хлориая кислога

+7 +5 +3 ±

ПЕРхлорАТ хлорАТ хлорИТ

A	1	1	A
Натрий	Калий	Литий	Кальций
Окрас пламени: эксептый	Окрас пламени: фиолетовый	Окрас пламени: малиновый	Окрас пламени: кирпично-красный
A	M	M	A
Стронций	<u>Барий</u>	<u>Мель</u>	Бор
Окрас пламени: красный	Окрас пламени: желто-зеленый	Окрас пламени: ярко-зеленый	Окрас пламени: зеленый

Индикатор	Цве	ет индикатора в ср	еде
индикатор	Кислая	Нейтральная	Щелочная
Лакмус		Фиолетовый	Синий
Фенолфталеин	Бесцветный	Бесцветный	Малиновый
Метиловый оранжевый	Розовый	Оранжевый	Жёлтый

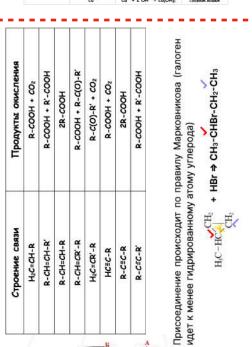
Восстановитель	Продукт окисления	Условия	Примечания
c	со	При высоких температурах	Неполное окислени кислородом или сплавление
	CO2	Кислая среда или горение	*
со	CO ₂	Кислая среда или горение	
Me [®]	Макс. и промежуточная степень окисления	Кислая и нейтральная среда	¥
Амфотерные металлы (Al, Zn, Be)	[Be(OH) ₄] ²⁻ [Zn(OH) ₄] ²⁻ [Al(OH) ₄] ⁻	Щелочная среда	2
	BeO ₂ ²⁻ , ZnO ₂ ²⁻ , AlO ₂ ⁻	Сплавление со щелочью	25
s	SO ₂	Горение или кислая среда	25
(порошок желтого цвета)	SO ₄ -	Любая среда с сильными окислителем	*
	SO ₃ ²	Щелочная среда	*
H ₂ S, S ²⁻	s	Если реакция идет со слабыми окислителями	70
	SO ₂	Обжиг	- 1
	H ₂ SO ₄ , SO ₄ ²⁻	Если реакция идет с сильными окислителями	*
SO ₂	H ₂ SO ₄ , SO ₄ ²	Водный раствор	*
H ₂ SO ₃	H ₂ SO ₄ , SO ₄ ²	Водный раствор	*
SO ₃ -	H ₂ SO ₄ , SO ₄ ²	Водный раствор	2
CANAL.	N ₂	Чаще всего	
NH ₃	NO	Каталитическое окисление	Катализатор
Veg	CIO-	Щелочная среда	Без нагревания
Cl ₂	CIO ₃	Щелочная среда	Нагревание
1120	Bro-	Щелочная среда	Без нагревания
Br ₂	BrO ₃	Щелочная среда	Нагревание
12	10%	Щелочная среда	Нагревание

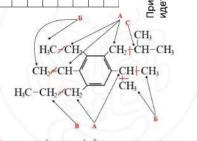
Восстановитель	Продукт окисления	Условия	Примечания
Азотистая кислота/нитриты HNO ₂ /NO ₂	HNO ₃ /NO ₃		5
Cu ¹	Cu2+	Кислая средя	2
Cu-	Cu(OH) ₂	Щелочная среда	
	Fe ³⁺	Кислая среда	
Fe ^{II}	Fe(OH) ₃	Щелочная среда	3
	Fe04-	Сильнощелочная среда	С очень сильными окислителями
Cr ^{III}	Cr04-	Щелочная среда	2
ur	Cr2O2-	Кислая среда	2
HCl и соли этой кислоты	Cl ₂	7.	*
НВг и соли этой кислоты	Br ₂	24	
НІ и соли этой кислоты	- Ag	1.5	i i
PH ₃	H ₃ PO ₄	Горение	
	H ₃ PO ₄ , PO ₄	Водный раствор	
Фосфиты НРО3-	H ₃ PO ₄	Горение	9
	H ₃ PO ₄ , PO ₄ ³⁻	Водный раствор	
P	P ₂ O ₃ /P ₂ O ₅	Горение (если неполное горение, то Р ₂ О ₃)	•
	H ₃ PO ₄ , PO ₄ ³⁻	Водный раствор	2
	P2O5	Горение	8
P2O3	H ₃ PO ₄ , PO ₄ ³⁻	Водный раствор	*
947920	O2 + H+	Кислая среда	
H ₂ O ₂	$O_2 + H_2O$	Нейтральная щелочная среда	- 5
	MnO ₄	Щелочная среда	
MnO ₂	MnO ₄	Кислая среда	Может быть и щелочная среда с сильным окислителез

Ион	Реактив	Уравнения реакций	Признак
co,2-	Fe ³ *	2 Fe ³⁺ + 3 CO ₂ ²⁺ + 3 H ₁ O = 2 Fe(OH) ₁ + 3 CO ₂	Выполение бурого осодко и выделения гоза
	Mn2-	Mn2+ + CO22- = MnCO3	Белюй осолон
HCO,	н.	H* + HCO ₁ " = CO ₂ + H ₂ O	Безинелькій газ без запажа
50 ² -	н.	2 H* + 50,2- = 50, + H,0	Бесшетный гоз. с резним золохом (запех сгороющий спички)
	Ca 2.	Ca2+ 50,2- = Ca50,	
	Ba 2+ Sr 2+	8a2+ 50,2- = 8a50,	Белий осолон
	Mg²⁺	Mg ²⁺ + 5O ₂ ²⁻ = Mg5O ₂	
HSO ₅	н,	2 H' + H5O ₁ ' = 5O ₁ + H ₁ O	Бесшетный гоз с режим зельком (жики сгороющий спини)
22222 x 2	H.2	2 H' + SiOx = HoSiOx	
	Ca 2.	Ca2+ + 5iO12- + Ca5iO1	Бельій осцани
SiO ₂ 2-	Ba 2. Sr 2.	Ba2+ + SIO,2+ = BaSIO,	вельн осцьон
	Mg ² *	Mg2" + SiO;2" = MgSiO;	
			Малорастворимо

	n,	3 Li* + PO43- = LisPO4	Молорастворимое вещество белого цикто
PO. ¹	Mg ^{2*}	3 Mg ²⁺ + 2 PO ₁ ³⁻ = Mg ₂ (PO ₁);	
	Ca 2+	3 Ca2+ + 2 PO,3- = Ca,(PO.):	
	Ba 2+ Sr 2+	3 Ba2+ 2 PO,3- = Bas(POs):	Бельой основк
	Zn2+	3 Zn2+ + 2 PO,3- = Zn,(PO,)1	
	Al3-	Al3"+ PO.3" = AIPO.	
	Cr3+	Cr3+ + PO,3- = CrPO,	Черный осодом
	Fe ³ "	Fe ³⁺ + PO, ³⁻ = FePO,	Желтый основ
	Ag *	3 Ag" + PO.3" = Ag,PO.	Желтый осовон
	Ba 2. Sr 2.	Ba ²⁺ + CrO, ²⁻ = BaCrO,	Желтый осодон
	Zn ²⁺	Zn2+ CrO,2- = ZnCrO,	Желтый осолок
CrO.2-	Pb 2*	Pb2+ + CrO,2- = PbCrO,	Желтый осодон
	Ag *	Ag" + CrO.2" = Ag:CrO.	Кирпично-красный освязан

Ион	Реактив	Уравнения реакций	Признак
	OH -	Cu2+ 2 OH = Cu(OH)2	Голубой осодок
Cu2+	s²-	Cu2+ 52 = Cu5	Черный осадок
	ı-	2 Cu 2- + 4 I = 2 CuI + I2	Бельгй осадок
н	Лакмус		Красный
	Метилоранж		Красный
	Фенолфталеин		Бесцветный
	CO32-	2 H' + CO32 = CO2 + H2O	Бесцветный газ
	HCO ₃	H" + HCO3" = CO2 + H2O	без запаха
	5²-	2 H* + S2- = H2S	Бесцветный газ с
	н5"	H' + HS' = H2S	неприятным запахом тухлых яиц
	5032-	2 H+ + 5032 = 502 + H2O	Бесцветный газ с
	H5O ₃ *	H' + H5O3" = 5O2 + H2O	резним запахом (запах сгорающий спички)
	SiO ₃ ²	2 H" + SiO32- = H2SiO3	Бельай осодок

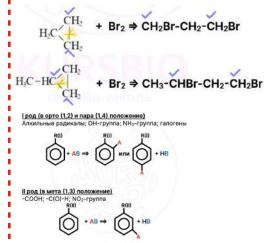

Ион	Реактив	Уравнения реакций	Признак	
11.78251	F.	Li* + F ' = LiF	Молорастворимон	
Li*	PO43-	3 Li" + PO43- = LisPO4	вещество белого цвета	
NH4	он :	NH4" + OH " = NH3 + H2O	Газ с резким запахом	
	OH :	Mg2+ 2 OH "= Mg(OH)2		
	F.	Mg2+ + 2 F = MgFz		
Mg ² *	CO32-	Mg ²⁺ + CO ₃ ²⁻ = MgCO ₃		
	50,2-	Mg ²⁺ + 5O ₃ ²⁻ = Mg5O ₃	Белый осолок	
	SiO ₃ ² -	Mg ²⁺ • SiO ₃ ²⁻ = MgSiO ₃		
	PO ₄ 3-	3 Mg ^{2*} + 2 PO ₄ ^{3*} = Mg ₂ (PO ₄) ₂		
	HPO42-	Mg2+ HPO42 = MgHPO4		
	n Fill	Ca2+ + 2 F = CaF2		
	CO32-	Ca2+ + CO32- = CaCO3		
	50,2-	Ca2+ 5032- = Ca503		
Ca2.	5042-	Ca2+ + 5042- = Ca504	Белый осадок	
0.000.00	PO ₄ 3-	3 Ca ² + 2 PO ₄ ³ = Ca ₃ (PO ₄) ₂		
	HPO42-	Ca2+ HPO42- = CaHPO4		
	5iO ₃ 2-	Ca2+ + 5iO32- = Ca5iO3		
	F.	Ba2 + 2 F = BaF2		
	CO32-	Ba ^{2*} + CO ₃ ²⁻ = BaCO ₃		
	503 ²	Ba2+ 5032- = Ba503		
Ba ² *	5042-	Ba ²⁺ + 50 ₄ ²⁻ = Ba50 ₄	Белый осодок	
Sr ²⁻	PO ₄ 3-	3 Ba ²⁺ + 2 PO ₄ 3+ = Ba ₃ (PO ₄) ₂		
	HPO42-	Ba2+ + HPO42- = BaHPO4		
	SiO _s t.	Ba2" + 5iO32" # Ba5iO3		
			1997	


Ва²⁺ + CrO₄²⁻ = ВаСrO₄ Желтый ос

Ион	Реактив	Уравнения рег	экций	П	ризнак	
	Pb 2+	Pb2+ 52- =	Pbs	Черн	ий оселон	
	Cu 2+	Cu2+ 52- =	Cu5	Черн	ай осодон	
	Ag ·	Ag* + 5 ²⁻ = .	Ag ₂ S		коричневого солок	
54.	Fe ² '	Fe ²⁺ + 5 ²⁻ =	Fe5	Черн	ай осодон	
	Mn ²⁺	Mn2+ 52- =	Mns	Poses	ый осавох	
	н.	2 H* + 5 ^{t-} =	H _i S	неприят	HINEK FOR C	
HS *	н.	H" + H5" =	H ₆ S	неприят	THER TES C MOXIME SHEET THE MALE	
	u·	Li' + F ' =	LiF			
F.	Ca 2-	Ca2 + 2 F :	Ca2+ 2 F = CaF;		Бельгй осодок	
	Ba 2. Sr 2.	Ba2" + 2 F " =	BoF,			
	Mg ² *	Mg ²⁺ + 2 F ' =	MgF _i			
	Ag *	Ag* + Cl * a AgCl		орожистый орож		

	Mg*	Mg** + 2 F * =	MgF _i
0.220	Ag *	Ag" + Cl " ± AgCl	Белый творожистый осолов
a	Pb 2+	Pb2+ + 2 Cl " = PbCl;	Белий осция
(250)	Ag +	Ag+ Br = AgBr	бело-жетый оссао
Br "	Pb #*	Pb2+ + 2 Br ' = Pb8r;	белий осоох
	Ag *	Ag' + I = AgI	Желтий оседон
I.	РЬ 2-	Pb2+ + 2 I + # PbI	Желто-запотнетый осовоя
	Cu 2	2 Cu 2 - 4 I - 2 CuI + I,	Бельей оснава
	н.	2 H" + CO,2" = CO, + H,O	Recusematii roo fee
	Ca 2-	Ca2. + CO,2. = CaCO,	Белий основ
	Ba 2" Sr 2"	Ba ²⁺ + CO ₂ ²⁻ + BaCO ₂	Белий основ
	Mg ² *	Mg ²⁺ + CO ₂ ²⁻ = MgCO ₃	Белей основ
CO,2-	Zn²-	Zn2+ + CO,2+ = ZnCO, / (ZnOH),CO,	Белий основ
	Al ⁵ *	2 Al ³⁺ + 3 CO ₁ ²⁻ + 3 H ₂ O = 2 Al(OH) ₁ + 3 CO ₁	Выподение белого осодна и выраления бесплетного газа
	Cr3+	2 Cr ³⁺ + 3 CO ₁ ²⁺ + 3 H ₁ O = 2 Cr(OH) ₁ + 3 CO ₂	Выподение серо- зеленого осодне и выделение бесплетного газа
	Fe ¹	Fe2+ CO,2+ = FeCO,	белий осцов

Ион	Реактия	Уравнения реакций	Признак
	Ланмус		Consti
	Метилораны		Marmon
	Тенолфталеин		Малиновый
	NH."	NH," + OH " = NH, + H,O	Гез с реземи наполож
	Mg ¹ *	Mg2" + 2 OH '* Mg(OH),	Белий осолон
	Zn²*	Zn2+ 2 OH = Zn(OH);	Выполение белого осолне, раствориозыйся в целочая
он -	Al ³⁺	Al3" + 3 OH " = Al(OH),	Выпидание билого осадне, раствориоднось в целочах
	Fe ³ 1	Fe2" + 2 OH " + Fe(OH),	Сривно-зигионой осолон
	Fe ³⁺	Fe3" + 3 OH " = Fe(OH),	Бурьей оселок
	Cr2-	Cr3+ = 3 OH = Cr(OH),	Серо-зеленый основ
	Pb2-	Pb2+ + 2 OH - = Pb(OH).	Белий оснали
	Mn ² *	Mn2+ 2 OH - + Mn(OH);	Белей оськом, розовеный на каздуже
	Ag	2Ag" + 2OH " = Ag;O + H;O	Черный осодон
	Cu2-	Cu2" + 2 OH " = Cu(OH).	Галубой оссаон


ерода (первичный) превращается в СО2

ом углерода (вторичный) превращается в -СООН

A - amos -COOH

	OH .	Cr3+ + 3 OH - + Cr(OH),	Cepo-ac.	пений оседок	
Cr ^b "	co.e	2 Cr(OH)+ 3 CO;	36,0610	вение сере- го оседие и деление етносо гоза	
	PO.3-	Gr3+ + POx3- = GrPOx	Seps	NEW OCCUPOR	
Pb2+	52.	Pb2 + 52 = Pb5	Черн	юй, оснави	
Mu ₅₊	5 ²⁻	Mn2+ + 52- = Mn5	Pages	ый основ	
	a-	Ag' + Cl ' + AgCl		творожистый эспаси	
	Br	Ag* + Br * = AgBr	Seas-au	итнай осоден	
	T	Ag' * I ' * AgI	Hent	ий остдок	
Ag"	5 ² -	Ag* + 52- = Ag:5			
	PO. ²	3 Ag" + PO." = Ag PO.	Велт	ий оспаск	
	50.2	Z Ag' + SO.2" = Ag.50.	Sen	860,000 ES	KOK
	он -	Zn2+ + 2 OH = Zn	(OH),	Выгодом осли ростворен цело	ия. Замёся в
Zn²*	S ²	Zn2+ 52- = Zn	5	Бельой осодок	
	co,².	Zn2+ CO,2 = Zn0 (ZnOH),CO,	0, /	Белый осодок	
	PO.8	3 Zn2" + 2 PO.1" = Z)	(PO.):		
	cro.2	Zn2" + CrO,2 = Zn	cro.	Желтый	осваен
	OH-	Al3" + 3 OH " = Al((он).	Выпалени осил ростворян миля	ив. Нийся в
Al ³⁺	co,²-	2 Al ³ * + 3 CO, ² + 3 2 Al(OH), + 3 C		Выпадени осадна м в бесимен	каспени
	PO.3-	Al3+ PO,3- # All	PO+	Бельой основа	
	OH -	Fe ²⁺ + 2 OH ' = Fe	(OH),	Грино-э ска	
2020	co.t.	Fe2 + CO.2 = Fe	co.	Бельай осклок	
Fe ² *	St.	Fe2+ 52 = Fe	s	Черный.	оседон
	[Fe(CN).] ³	Fe ²⁻ • [Fe(CN) ₋] ² Fe[Fe(CN) ₋] ²	•	Синий	осадон
	OH -	Fe3+ + 3 OH " = Fe	(OH).		
Fe ³⁺	PO.3*	Fe3* + PO.3 - » Fe	PO.	Желтый	оседон
	[Fe(CN).]4	Fe ³⁺ + [Fe(CN).] ⁴ Fe[Fe(CN).]		Симий	осолон

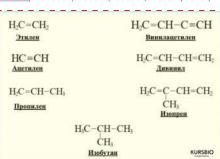
	H	u.	NH4.	Bor.	Car.	Mg.	Ap-	Ch2.	ner:	Le.	No.	COr.	Ag
он			For c person senson		*Exmail Occasive	Senati ocazos	Белий осадия Роствориятся и щелочих)	Gapo- movement (recogne	Capo- servinus recopes	Eppadi ocusos	Белей остави	Fonysioli dosaos	*
F-		Sensil ocasos		Senseli secops	Strack coupe	Strack ocazos							
a													Servel occase
Br-													Chetro Marriel Settan
r											Remak ocasos	Sendi ocuses	Merrid
Sž-	For a management or approxima								Separa coupes		Чересії осцам	(sepeciti ocapos	Magnetic DECEMBER
50,3-	Fox a passess passess			Bensek ecosow	Semeli Oceann	Serecii ocason							
504-				Serveii ecopys	Serveli (MARK)								Garagia Octabia
CO12-	Face des			Seraeli receptor	Servett ocuse	Servani respon	Sengi ocasox w res (COv)	Gepa- servendii occusor n riss (CDI)	Seraeli secone	Pypack conjunt is the (CO ₁)			
SIO ₂ 2-	Sensil means			Senseli eccam	Semeli coupe	Sensil ocusos							
chO42				Marriell occupy									Красне бурый опадач
PO+3-		Sensi		Seracio	Sensii	Sensi		Hepman magazin		Nemai			Remai

Строение	Степень окисления
H₂C=	-2
-CH-	-1
HC≡	-1
-cr	0
-CH(OH)-	-1
-CHz-OH	-1
-c(o)-	+2
-сно	+1
-соон	+3
CH ₃ OH	-2
нсон	0
нсоон	+2

			УГЛЕВОД	цы			
Вещество	10	Моносихириды		Лисихириды	Полисохориды		
	Рибоза	Енения	Фруктоза	Сахаром	Крахная	Ислинана	
Горение		du)	0				
H ₂	•	٠	•	•	*	•	
Гидролиз)(±)	828	18455	943	+	*	
Конц.серна я к-та	6.0	(* 3	+	+	:•€	*	
Cu(OH) ₂	+ (Многовтомный спирт, вльдегид)	+ (Многоатомный опирт, альдегид)	+ (Многоатемный спирт)	+ (Многоатомный спирт)	•:	((*)	
Ag ₂ O(NH ₂)		•	(140)		27	100	
HNO ₃	•				+	+	
Карбоновая кислота	5.00		5 4 0	0.00			
Йод	8.00	(*)	11 1 23		+:	11 1 22	

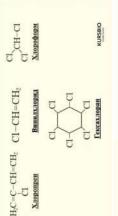
Вещество	Реактив	Признак реакции
***************************************	p-p Br ₂	Обесцвечивание р-ра
Алкены, алкадиены	p-p KMnO₄	Обесцвечивание р-ра
±1	p-p Br₂	Обесцвечивание р-ра
	p-p KMnO ₄	Обесцвечивание р-ра
Алкины	*с терминальной связью [Ag(NH ₃) ₂]OH	Выпадение бледно- желтого осадка
Гомологи бензол	p-p KMnO₄	Обесцвечивание р-ра
	p-p Br ₂	Выпадение белого осадка
Фенол	p-p FeCl ₃	Образование фиолетового р-ра
Одноатомные спирты	CuO	Выпадение красного осадка (медь)
Многоатомные спирты	Cu(OH) ₂	Образование ярко-синего р-ра
	Cu(OH)₂	Выпадение красного осадка
Альдегиды	[Ag(NH ₃) ₂]OH	Реакция «серебряного зеркала»
V	Лакмус	Красный цвет
Карбоновые кислоты	Карбонаты	Выделение газа
Mimoni was was	Cu(OH) ₂	Выделение газа и выпадение осадка
Муравьиная кислота	[Ag(NH ₃) ₂]OH	Реакция «серебряного зеркала»
Первичные амины	HNO ₂	Выделение газа
Вторичные амины	HNO ₂	Образование желтого труднорастворимого в-ва
Анилин	p-p Br ₂	Выпадение белого осадка

CH2-OH


CH2-OH

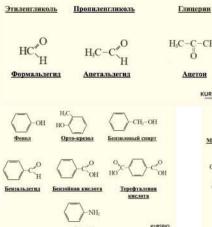
C₁₅H₃₁-COOH

C₁₆H₃₃-COOH


C₁₇H₃₅-COOH

Вещество	Реактив	Признак реакции
Крахмал	p-p l ₂	Образование синей окраски
Глюкоза	p-p KMnO ₄	Обесцвечивание р-ра
Глюкоза	Cu(OH) ₂	При нагревании - выпадение осадка Без нагревания - образование ярко-синего р-ра
	[Ag(NH ₃) ₂]OH	Образование фиолетового р-ра
Фруктоза	Cu(OH) ₂	Образование ярко-синего р-ра
Белок	НПО3(конц.)	Ярко-желтого окрашивания (если в белке есть АК с бензольным кольцом)
	Cu(OH) ₂	Образование фиолетового р-ра

Систематическое название	Формула	Тривиальное название
Пред	ельные однокарбоновые к	сислоты
Метановая к-та	нсоон	Муравьиная к-та
Этановая к-та	сн₃-соон	Уксусная к-та
Пропановая к-та	CH₃-CH₂-COOH	Пропионовая к-та
Бутановая к-та	CH ₃ -CH ₂ -CH ₂ -COOH	Масляная к-та
Пентановая к-та	CH3-(CH2)3-COOH	Валериановая к-та
Гексановая к-та	CH3-(CH2)4-COOH	Капроновая к-та



Систематическое название

Гексадекановая к-та

Гептадекановая к-та

HO-CH₂-CH-CH₃

OH

СН-ОН

CH2-OH

Ацетон

C C H	$\text{OH} \\ \text{OC}_{\text{O}}^{\text{OH}}$	HO'C-CO
Бензальдегид	Бензойная кислога	Терефтиления кислота
	Динлин	KURSBI

Пальмитиновая к-та

Маргариновая к-та

H ₂ C-C,OH	H ₂ C-CH ₂ -CH ₂ -CCOH
Уксусная к-та	Масляная к-та
O, C-(CH ₂) ₁₆ -CH ₃	O _a C-(CH ₂) _M -CH ₁
Стеариновая к-та	Пальмитиновая к-тг
	O ₆ C-(CH ₂) ₁₆ -CH ₅

CH-CH₂

Стирол

Систематическое название	Формула	Тривиальное название
Пред	цельные дикарбоновые ки	слоты
Этандиовая к-та	ноос-соон	Щавелевая к-та
Пропандиовая к-та	HOOC-CH2-COOH	Малоновая к-та
Гександиовая к-та	HOOC-(CH ₂) ₄ -COOH	Адипиновая к-та